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Notes on the “Butcher and Cotter convention” in nonlinear optics

Convention for description of nonlinear optical polarization

As a “recipe” in theoretical nonlinear optics, Butcher and Cotter provide a very useful convention
which is well worth to hold on to. For a superposition of monochromatic waves, and by invoking
the general property of the intrinsic permutation symmetry, the monochromatic form of the nth
order polarization density can be written as
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(1)
The first summations in Eq. (1), over α1, . . . , αn, is simply an explicit way of stating that the
Einstein convention of summation over repeated indices holds. The summation sign

∑

ω, however,
serves as a reminder that the expression that follows is to be summed over all distinct sets of

ω1, . . . , ωn. Because of the intrinsic permutation symmetry, the frequency arguments appearing in
Eq. (1) may be written in arbitrary order.

By “all distinct sets of ω1, . . . , ωn”, we here mean that the summation is to be performed, as
for example in the case of optical Kerr-effect, over the single set of nonlinear susceptibilities that
contribute to a certain angular frequency as (−ω; ω, ω,−ω) or (−ω; ω,−ω, ω) or (−ω;−ω, ω, ω).
In this example, each of the combinations are considered as distinct, and it is left as an arbitary
choice which one of these sets that are most convenient to use (this is simply a matter of choosing
notation, and does not by any means change the description of the interaction).

In Eq. (1), the degeneracy factor K is formally described as

K(−ωσ; ω1, . . . , ωn) = 2l+m−np

where
p = the number of distinct permutations of ω1, ω2, . . . , ω1,

n = the order of the nonlinearity,

m = the number of angular frequencies ωk that are zero, and

l =

{

1, if ωσ 6= 0,
0, otherwise.

In other words, m is the number of DC electric fields present, and l = 0 if the nonlinearity we are
analyzing gives a static, DC, polarization density, such as in the previously (in the spring model)
described case of optical rectification in the presence of second harmonic fields (SHG).

A list of frequently encountered nonlinear phenomena in nonlinear optics, including the degen-
eracy factors as conforming to the above convention, is given in Butcher and Cotters book, Table
2.1, on page 26.

Note on the complex representation of the optical field

Since the observable electric field of the light, in Butcher and Cotters notation taken as

E(r, t) =
1

2

∑

ωk≥0

[Eωk
exp(−iωkt) + E∗

ωk
exp(iωkt)],

is a real-valued quantity, it follows that negative frequencies in the complex notation should be
interpreted as the complex conjugate of the respective field component, or

E−ωk
= E∗

ωk
.
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Example: Optical Kerr-effect

Assume a monochromatic optical wave (containing forward and/or backward propagating compo-
nents) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R
3,

with all spatial variation of the field contained in

Eω(z) = exEx
ω(z) + eyEy

ω(z) ∈ C
3.

Optical Kerr-effect is in isotropic media described by the third order susceptibility

χ
(3)
µαβγ(−ω; ω, ω,−ω),

with nonzero components of interest for the xy-polarized beam given in Appendix 3.3 of Butcher
and Cotters book as

χ(3)
xxxx = χ(3)

yyyy, χ(3)
xxyy = χ(3)

yyxx =

{

intr. perm. symm.
(α, ω) ⇋ (β, ω)

}

= χ(3)
xyxy = χ(3)

yxyx, χ(3)
xyyx = χ(3)

yxxy,

with
χ(3)

xxxx = χ(3)
xxyy + χ(3)

xyxy + χ(3)
xyyx.

The degeneracy factor K(−ω; ω, ω,−ω) is calculated as

K(−ω; ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From this set of nonzero susceptibilities, and using the calculated value of the degeneracy factor in
the convention of Butcher and Cotter, we hence have the third order electric polarization density

at ωσ = ω given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)], with
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= {Using the convention of Butcher and Cotter}
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= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}
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For the optical field being linearly polarized, say in the x-direction, the expression for the polar-
ization density is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ(3)

xxxx|E
x
ω|

2Ex
ω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|

2) contribution to the
refractive index (cf. Butcher and Cotter §6.3.1).
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