
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 8

In this lecture, the electric polarisation density of the medium is finally inserted into Maxwell’s
equations, and the wave propagation properties of electromagnetic waves in nonlinear optical media
is for the first time in this course analysed. As an example of wave propagation in nonlinear optical
media, the optical Kerr effect is analysed for infinite plane continuous waves.

The outline for this lecture is:
• Maxwells equations (general electromagnetic wave propagation)
• Time dependent processes (envelopes slowly varying in space and time)
• Time independent processes (envelopes slowly varying in space but constant in time)

• Examples (optical Kerr-effect ⇔ χ
(3)
µαβγ(−ω; ω, ω,−ω))

Wave propagation in nonlinear media

Maxwell’s equations

The propagation of electromagnetic waves are, from a first principles approach, governed by the
Maxwell’s equations (here listed in their real-valued form in SI units),

∇× E(r, t) = −
∂B(r, t)

∂t
, (Faraday′s law)

∇× H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (Ampere′s law)

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = 0,

where ρ(r, t) is the density of free charges, and J(r, t) the corresponding current density of free
charges.

Constitutive relations

The constitutive relations are in SI units formulated as

D(r, t) = ε0E(r, t) + P(r, t),

B(r, t) = µ0[H(r, t) + M(r, t)],

where P(r, t) = P[E(r, t),B(r, t)] is the macroscopic polarization density (electric dipole moment
per unit volume), and M(r, t) = M[E(r, t),B(r, t)] the magnetization (magnetic dipole moment
per unit volume) of the medium.

Here E(r, t) and B(r, t) are considered as the fundamental macroscopic electric and magnetic
field quantities; D(r, t) and H(r, t) are the corresponding derived fields associated with the state
of matter, connected to E(r, t) and B(r, t) through the electric polarization density P(r, t) and
magnetization (magnetic polarization density) M(r, t) through the basic constitutive relations. In
fact, the constitutive equations above form the very definitions1 of the electric polarization density
and magnetization.

1 J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975); J. A. Stratton,
Electromagnetic Theory (McGraw-Hill, New York, 1941).
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Two frequent assumptions in nonlinear optics

• No free charges present,

ρ(r, t) = 0, J(r, t) = 0.

(Any relaxation processes etc. are included in imaginary parts of the terms of the electric
susceptibility.)

• No magnetization of the medium,

M(r, t) = 0.

The wave equation

By taking the cross product with the nabla operator and Faraday’s law, one obtains

∇×∇× E(r, t) = −
∂

∂t
∇× B(r, t)

= −µ0
∂

∂t
∇× H(r, t)

= −µ0
∂

∂t

∂D(r, t)

∂t

= −µ0

(

ε0
∂2E(r, t)

∂t2
+

∂2P(r, t)

∂t2

)

.

Since now µ0ε0 = 1/c2 in SI units, with c being the speed of light in vacuum, one hence obtains
the basic wave equation, taken in time domain, as

∇×∇× E(r, t) +
1

c2

∂2E(r, t)

∂t2
= −µ0

∂2P(r, t)

∂t2
, (1)

where, as in the previous lectures of this course, the polarization density can be written in terms
of the perturbation series as

P(r, t) =
∞∑

k=1

P(k)(r, t) = ε0

∫ ∞

−∞

χ(1)
µα(−ω; ω)Eα(r, ω) exp(−iωt) dω

︸ ︷︷ ︸

=P(1)(r,t)

+
∞∑

k=2

P(k)(r, t)

︸ ︷︷ ︸

=P(NL)(r,t)

In the left hand side of Eq. (1), we find the part of the homogeneous wave equation for propagation
of electromagnetic waves in vacuum, while the right hand side described the modifications to the
vacuum propagation due to the interaction between light and matter. In this respect, it is now
clear that the electric polarisation effectively acts as a source term in the mathematical description
of electromagnetic wave propagation, making the otherwise homogeneous vacuum problem an
inhomogeneous problem (though with known source terms).

It should be noticed that whenever the polarization density is calculated from the Bloch equa-
tions (formulated later on, in lecture 10 of this course), instead of by means of a perturbation
series as above, the Maxwell equations and the wave equation (1) above are denoted Maxwell-

Bloch equations. In some sense, we can therefore see the choice of method for the calculation of
the polarization density as a switch point not only for using the susceptibility formalism or not for
the description of interaction between light and matter, but also for the form of the wave propa-
gation problem in nonlinear media, which mathematically significantly differ between the “pure”
Maxwell’s equations with susceptibilities and the Maxwell-Bloch equations.
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The wave equation in frequency domain (optional)

Frequently in this course, we have rather been studying the electric fields and polarisation densities
in frequency domain, since many phenomena in optics are properly and conveniently described as
static (in which case the frequency dependence is simply reduced to the interaction between discrete
frequencies in the spectrum). By using the Fourier integral identity2

Eα(t) =

∫ ∞

−∞

Eα(ω) exp(−iωt) dω = F
−1[Eα](t),

with inverse relation

Eα(ω) =
1

2π

∫ ∞

−∞

Eα(τ ) exp(iωτ ) dτ = F[Eα](ω),

we obtain the wave equation (1) as

∇×∇× E(r, ω) −
ω2

c2
E(r, ω) = µ0ω

2P(r, ω).

Quasimonochromatic light - Time dependent problems

By inserting the perturbation series for the electric polarisation density into the general wave
equation (1), which apply to arbitrary electric field distributions and field intensities of the light,
one obtains the equation

∇×∇× E(r, t) +
1

c2

∂2

∂t2

∫ ∞

−∞

eµεµα(ω)Eα(r, ω) exp(−iωt) dω

︸ ︷︷ ︸

(denote this integral as I for later use)

= −µ0
∂2P(NL)(r, t)

∂t2
, (2)

where
εµα(ω) = δµα + χ(1)

µα(−ω; ω)

is a parameter commonly denoted as the relative electrical permittivity.3 This wave equation is
identical to Eq. (7.14) in Butcher and Cotter’s book. (Notice though the printing error in Butcher
and Cotter’s Eq. (7.14), where the first µ0 should be replaced by 1/c2.)

The second term of the left hand side of Eq. (2) gives all first order optical contributions to
the wave propagation, as well as all linear optical dispersion effects. This terms deserves some
extra attention, and we will now proceed with deriving the effect of the frequency dependence of
the relative permittivity upon the wave equation. First of all, we notice that since Eα(r,−ω) =
E∗

α(r, ω), which simply is a consequence of the choice of complex Fourier transform of a real valued
field, the reality condition of Eq. (2) requires that

εµα(−ω) = ε∗µα(ω).

2 From the inverse Fourier integral identity, it follows that the Fourier transform of a derivative
of a function f(t) is

F[f ′(t)](ω) = −iω F[f(t)](ω) ⇒ F[f ′′(t)](ω) = −ω2
F[f(t)](ω).

3 Notice that for isotropic media, χ
(1)
µα(−ω; ω) = χ

(1)
xx (−ω; ω)δµα, which leads to the simplified

form
eµεµα(ω)Eα(r, ω) = ε(ω)E(r, ω).

We will here, however, continue with the general form, in order not to loose generality in discussion
that is to follow.
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It should be emphasized that this property of the relative electrical permittivity merely is a conve-
nient mathematical construction, since we in regular physical terms only consider positive angular
frequencies as argument for the refractive index, etc.

For quasimonochromatic light, the electric field and polarisation density are taken as

E(r, t) =
∑

ωσ≥0

Re[Eωσ
(r, t) exp(−iωσt)],

P(r, t) =
∑

ωσ≥0

Re[Pωσ
(r, t) exp(−iωσt)],

where Eωσ
(r, t) and Pωσ

(r, t) are slowly varying envelopes of the fields. In the frequency domain,
the quasimonochromatic fields are expressed as

E(r, ω) =
1

2

∑

ωσ≥0

[Eωσ
(r, ω − ωσ) + E∗

ωσ

(r,−ω − ωσ)],

P(r, ω) =
1

2

∑

ωσ≥0

[Pωσ
(r, ω − ωσ) + P∗

ωσ

(r,−ω − ωσ)],

where the envelopes have some limited extent around the carrier frequencies at ±ωσ. Notice that
the fields taken in the frequency domain are expressed entirely in terms of their respective temporal
envelope, that is to say, without the exponential functions that appear in their counterparts in time
domain.

For simplicity considering a medium that in the linear optical domain is isotropic, with the
relative electrical permittivity

εµα(ω) = ε(ω)δµα = n2
0(ω)δµα,

where n0(ω) is the first order contribution to the refractive index of the medium, this leads to the
middle term of the wave equation (1) in the form

I ≡
1

c2

∂2

∂t2

∫ ∞

−∞

eµεµα(ω)Eα(r, ω) exp(−iωt) dω

= −

∫ ∞

−∞

ω2n2(ω)

c2

1

2

∑

ωσ≥0

[Eωσ
(r, ω − ωσ) + E∗

ωσ

(r,−ω − ωσ)]

︸ ︷︷ ︸

quasimonochromatic form of E(r,ω)

exp(−iωt) dω

= {denote ω2ε(ω)/c2 ≡ ω2n2
0(ω)/c2 ≡ k2(ω)}

= −
1

2

∑

ωσ≥0

∫ ∞

−∞

k2(ω)[Eωσ
(r, ω − ωσ) + E∗

ωσ

(r,−ω − ωσ)] exp(−iωt) dω.

= −
1

2

∑

ωσ≥0

∫ ∞

−∞

k2(ω)Eωσ
(r, ω − ωσ) exp(−iωt) dω + c. c.

If now the field envelopes decay to zero rapidly enough in the vicinity of the carrier frequencies
(as we would expect for quasimonochromatic light, with a strong spectral confinement around the
carrier frequency of the light), then we may expect that a good approximation is to make a Taylor
expansion of k2(ω), in the neighbourhood of respective carrier frequency of the light, as

k2(ω) ≈
(

k(ωσ) +
dk

dω

∣
∣
∣
ωσ

(ω − ωσ) +
1

2!

d2k

dω2

∣
∣
∣
ωσ

(ω − ωσ)2
)2

≈ k2
σ + 2kσ

dk

dω

∣
∣
∣
ωσ

(ω − ωσ) + kσ

d2k

dω2

∣
∣
∣
ωσ

(ω − ωσ)2,
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where the notation kσ = k(ωσ) was introduced, and hence4

I ≈ −
1

2

∑

ωσ≥0

∫ ∞

−∞

(

k2
σ + 2kσ

dk

dω

∣
∣
∣
ωσ

(ω − ωσ) + kσ

d2k

dω2

∣
∣
∣
ωσ

(ω − ωσ)2
)

× Eωσ
(r, ω − ωσ) exp(−iωt) dω + c. c.

= {change variable of integration ω′ = ω − ωσ}

= −
1

2

∑

ωσ≥0

∫ ∞

−∞

(

k2
σ + 2kσ

dk

dω

∣
∣
∣
ωσ

ω′ + kσ

d2k

dω2

∣
∣
∣
ωσ

ω′2
)

× Eωσ
(r, ω′) exp(−iω′t) dω′ exp(−iωσt) + c. c.

=

{

use

∫ ∞

−∞

ωnf(ω) exp(−iωt) dω = F
−1[ωnf(ω)](t) = in

dnf(t)

dtn

}

= −
1

2

∑

ωσ≥0

exp(−iωσt)
(

k2
σ + i2kσ

dk

dω

∣
∣
∣
ωσ

∂

∂t
− kσ

d2k

dω2

∣
∣
∣
ωσ

∂2

∂t2

)

Eωσ
(r, t) + c. c.

As this result is inserted back into the wave equation (2), one obtains

1

2

∑

ωσ≥0

exp(−iωσt)
[

∇×∇× Eωσ
(r, t)

−
(

k2
σ + 2ikσ

dk

dω

∣
∣
∣
ωσ

∂

∂t
− kσ

d2k

dω2

∣
∣
∣
ωσ

∂2

∂t2

)

Eωσ
(r, t)

]

+ c. c.

= −µ0
∂2P(NL)(r, t)

∂t2

= −µ0
∂2

∂t2
1

2

∑

ωσ≥0

P(NL)
ωσ

(r, t) exp(−iωσt) + c. c.

≈ µ0
1

2

∑

ωσ≥0

ω2
σP(NL)

ωσ

(r, t) exp(−iωσt) + c. c.

As we separate out the respective frequency components at ω = ωσ of this equation, one obtains
the time dependent wave equation for the temporal envelope components of the electric field as

∇×∇× Eωσ
(r, t) −

(

k2
σ + i2kσ

1

vg

∂

∂t
− kσ

d2k

dω2

∣
∣
∣
ωσ

∂2

∂t2

)

Eωσ
(r, t) = µ0ω

2
σP

(NL)
ωσ

(r, t), (3)

where

vg =
( dk

dω

∣
∣
∣
ωσ

)−1

.

4 Notice that unless we apply the second approximation in the Taylor expansion of k2(ω), terms
containing the squares of the derivatives will appear, which will lead to wave equations that differ
from the ones given by Butcher and Cotter. In particular, this situation will arise even if one uses
the suggested expansion given by Eq. (7.23) in Butcher and Cotter’s book, which hence should be
taken with some care if one wish to build a strict foundation for the time-dependent wave equation.
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Three practical approximations

[1] The infinite plane wave approximation,

Eωσ
(r, t) = Eωσ

(z, t)⊥ez ⇒ ∇×∇× → −
∂2

∂z2
.

[2] Unidirectional propagation,

Eωσ
(z, t) = Aωσ

(z, t) exp(±ikσz)

⇓

∇×∇× Eωσ
(z, t) = −[

∂2Aωσ

∂z2
± 2ikσ

∂Aωσ

∂z
− k2

σAωσ
] exp(±ikσz),

for waves propagating in the positive/negative z-direction. In this case, the real-valued electric
field hence takes the form

E(r, t) =
∑

ωσ≥0

Re[Eωσ
(r, t) exp(−iωσt)]

=
∑

ωσ≥0

Re[Aωσ
(z, t) exp(±ikσz − iωσt)]

=
∑

ωσ≥0

|Aωσ
(z, t)|Re{exp[ikσz ∓ iωσt + iφ(z)]}

=
∑

ωσ≥0

|Aωσ
(z, t)| cos(kσz ∓ ωσt + φ(z)),

where φ(z, t) describes the spatially and temporally varying phase of the complex-valued slowly
varying envelope function Aωσ

(z, t) of the electric field.

[3] The slowly varying envelope approximation,

∣
∣
∣
∂2Aωσ

∂z2

∣
∣
∣ ≪

∣
∣
∣kσ

∂Aωσ

∂z

∣
∣
∣.

These approximations, whenever applicable, further reduce the time dependent wave equation to

(

± i
∂

∂z
+ i

1

vg

∂

∂t
−

1

2

d2k

dω2

∣
∣
∣
ωσ

∂2

∂t2

)

Aωσ
(z, t) = −

µ0ω
2
σ

2kσ

P(NL)
ωσ

(r, t) exp(∓ikσz). (4)

This form of the wave equation is identical to Butcher and Cotter’s Eq. (7.24), with the exception
that here waves propagating in positive (upper signs) as well as negative (lower signs) z-direction
are considered.
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Monochromatic light

Monochromatic optical field

E(r, t) =
∑

σ

Re[Eωσ
(r) exp(−iωσt)], ωσ ≥ 0

E(r, ω) =
1

2

∑

σ

[Eωσ
(r)δ(ω − ωσ) + E∗

ωσ

(r)δ(ω + ωσ)]

Polarization density induced by monochromatic optical field

P(n)(r, t) =
∑

ωσ≥0

Re[P(n)
ωσ

exp(−iωσt)], ωσ = ω1 + ω2 + . . . + ωn

(For construction of P
(n)
ωσ

, see notes on the Butcher and Cotter convention handed out during the
third lecture.)

Monochromatic light - Time independent problems

For strictly monochromatic light, as for example the output light of continuous wave lasers, the
temporal field envelopes are constants in time, and the wave equation (3) is reduced to

∇×∇× Eωσ
(r) − k2

σEωσ
(r) = µ0ω

2
σP(NL)

ωσ

(r). (5)

By applying the above listed approximations, one immediately finds the monochromatic, time
independent form of Eq. (3) in the infinite plane wave limit and slowly varying approximation as

∂

∂z
Aωσ

= ±i
µ0ω

2
σ

2kσ

P(NL)
ωσ

exp(∓ikσz), (6)

where the upper/lower sign correspond to a wave propagating in the positive/negative z-direction.
This equation corresponds to Butcher and Cotter’s Eq. (7.17).
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Example I: Optical Kerr-effect - Time independent case

In this example, we consider continuous wave propagation5 in optical Kerr-media, using light
polarized in the x-direction and propagating along the positive direction of the z-axis,

E(r, t) = Re[Eω(z) exp(−iωt)], Eω(z) = Aω(z) exp(ikz) = exAx
ω(z) exp(ikz),

where, as previously, k = ωn0/c. From material handed out during the third lecture (notes on the
Butcher and Cotter convention), the nonlinear polarization density for x-polarized light is given

as P
(NL)
ω = P

(3)
ω , with

P(3)
ω = ε0(3/4)exχ(3)

xxxx(−ω; ω, ω,−ω)|Ex
ω|

2Ex
ω

= ε0(3/4)χ(3)
xxxx|Eω|

2Eω

= ε0(3/4)χ(3)
xxxx|Aω|

2Aω exp(ikz),

and the time independent wave equation for the field envelope Aω, using Eq. (6), becomes

∂

∂z
Aω = i

µ0ω
2

2k
ε0(3/4)χ(3)

xxxx|Aω|
2Aω exp(ikz)

︸ ︷︷ ︸

=P
(NL)
ω

(z)

exp(−ikz)

= i
3ω2

8c2k
χ(3)

xxxx|Aω|
2Aω

= {since k = ωn0(ω)/c}

= i
3ω

8cn0
χ(3)

xxxx|Aω|
2Aω

= {in analogy with Butcher and Cotter Eq. (6.63), n2 = (3/8n0)χ
(3)
xxxx}

= i
ωn2

c
|Aω|

2Aω,

or, equivalently, in its scalar form

∂

∂z
Ax

ω = i
ωn2

c
|Ax

ω|
2Ax

ω.

If the medium of interest now is analyzed at an angular frequency far from any resonance, we may
look for solutions to this equation with |Aω| being constant (for a lossless medium). For such a
case it is straightforward to integrate the final wave equation to yield the general solution

Aω(z) = Aω(z0) exp[iωn2|Aω(z0)|
2z/c],

or, again equivalently, in the scalar form

Ax
ω(z) = Ax

ω(z0) exp[iωn2|A
x
ω(z0)|

2z/c],

which hence gives the solution for the real-valued electric field E(r, t) as

E(r, t) = Re[Eω(z) exp(−iωt)]

= Re{Aω(z) exp[i(kz − ωt)]}

= Re{Aω(z0) exp[i(kz + ωn2|Aω(z0)|
2z/c − ωt)]}.

From this solution, one immediately finds that the wave propagates with an effective propagation
constant

k + ωn2|Aω(z0)|
2/c = (ω/c)(n0 + n2|Aω(z0)|

2),

that is to say, experiencing the intensity dependent refractive index

neff = n0 + n2|Aω(z0)|
2.

5 That is to say, a time independent problem with the temporal envelope of the electrical field
being constant in time.
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Example II: Optical Kerr-effect - Time dependent case

We now consider a time dependent envelope Eω(z, t), of an optical wave propagating in the same
medium and geometry as in the previous example, for which now

E(r, t) = Re[Eω(z, t) exp(−iωt)], Eω(z, t) = Aω(z, t) exp(ikz) = exAx
ω(z, t) exp(ikz).

The proper wave equation to apply for this case is the time dependent wave equation (4), and since
the nonlinear polarization density of the medium still is given by the optical Kerr-effect, we obtain

(

i
∂

∂z
+ i

1

vg

∂

∂t
−

1

2

d2k

dω2

∣
∣
∣
ωσ

∂2

∂t2

)

Aω(z, t)

= −
µ0ω

2

2k
ε0(3/4)χ(3)

xxxx|Aω(z, t)|2Aω(z, t) exp(ikz)
︸ ︷︷ ︸

=P
(NL)
ω

(z,t)

exp(−ikz)

= −
3ω2

8c2k
χ(3)

xxxx|Aω(z, t)|2Aω(z, t)

= {as in previous example}

= −
ωn2

c
|Aω(z, t)|2Aω(z, t).

The resulting wave equation

(

i
∂

∂z
+ i

1

vg

∂

∂t
−

1

2

d2k

dω2

∣
∣
∣
ωσ

∂2

∂t2

)

Aω = −
ωn2

c
|Aω|

2Aω

is the starting point for analysis of solitons and solitary waves in optical Kerr-media. The obtained
equation is the non-normalized form of the in nonlinear physics (not only nonlinear optics!) often
encountered nonlinear Schrödinger equation (or NLSE, as its common acronym yields).

For a discussion on the transformation that cast the nonlinear Schrödinger equation into the
normalized nonlinear Schrödinger equation, see Butcher and Cotter’s book, page 240.
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