
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 7

So far, this course has mainly dealt with the dependence of the angular frequency of the light
and molecular interaction strength in the description of nonlinear optics. In this lecture, we will
now end this development of the description of interaction between light and matter, in favour
of more engineering practical techniques for describing the theory of an experimental setup in a
certain geometry, and for reducing the number of necessary tensor elements needed for describing
a mediumof a certain crystallographic point-symmetry group.

Motivation for analysis of susceptibilities in rotated coordinate systems

For a given experimental setup, it is often convenient to introduce some kind of reference coordinate
frame, in which one for example express the wave propagation as a linear motion along some
Cartesian coordinate axis. This laboratory reference frame might be chosen, for example, with
the z-axis coinciding with the direction of propagation of the optical wave at the laser output, in
the phase-matched direction of an optical parametric oscillator (OPO), after some beam aligning
mirror, etc.

In some cases, it might be so that this laboratory frame coincide with the natural coordinate
frame1 of the nonlinear crystal, in which case the coordinate indices of the linear as well as nonlinear
susceptibility tensors take the same values as the coordinates of the laboratory frame. However, we
cannot generally assume the coordinate frame of the crystal to coincide with a conveniently chosen
laboratory reference frame, and this implies that we generally should be prepared to spatially
transform the susceptibility tensors to arbitrarily rotated coordinate frames.

Having formulated these spatial transformation rules, we will also directly benefit in another
aspect of the description of nonlinear optical interactions, namely the reduction of the suscepti-
bility tensors to the minimal set of nonzero elements. This is typically performed by using the
knowledge of the so called crystallographic point ymmetry group of the medium, which essentially
is a description of the spatial operations (rotations, inversions etc.) that define the symmetry
operations of the medium.

As a particular example of the applicability of the spatial transformation rules (which we
soon will formulate) is illustrated in Figs. 1 and 2. In Fig. 1, the procedure for analysis of sum
or frequency difference generation is outlined. Starting from the description of the linear and
nonlinear susceptibility tensors of the medium, as we previously have derived the relations from
a first principle approach in Lectures 1–6, we obtain the expressions for the electric polarization
densities of the medium as functions of the applied electric fields of the optical wave inside the
nonlinear crystal. These polarization densities are then inserted into the wave equation, which
basically is derived from Maxwell’s equations of motion for the electromagnetic field. In the wave
equation, the polarization densities act as source terms in an otherwise homogeneous equation for
the motion of the electromagnetic field in vacuum.

As the wave equation is solved for the electric field, here taken in complex notation, we have
solved for the general output from the crystal, and we can then design the experiment in such a
way that an optimal efficiency is obtained.

1 The natural coordinate frame of the crystal is often chosen such that some particular symmetry
axis is chosen as one of the Cartesian axes.
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Figure 1. The setup in which the orientation of the laboratory and crystal frames coincide.

In Fig. 1, this outline is illustrated for the case where the natural coordinate frame of the crystal
happens to coincide with the coordinate system of the laboratory frame. In this case, all ele-
ments of the susceptibilities taken in the coordinate frame of the crystal (which naturally is the
coordinate frame in which we can obtain tabulated sets of tensor elements) will coincide with the
elements as taken in the laboratory frame, and the design and interpretation of the experiment is
straightforward.

However, this setup clearly constitutes a rare case, since we have infinitely many other possibil-
ities of orienting the crystal relative the laboratory coordinate frame. Sometimes the experiment is
designed with the crystal and laboratory frames coinciding, in order to simplify the interpretation
of an experiment, and sometimes it is instead necessary to rotate the crytal, in order to achieve
phase-matching of nonlinear process, as is the case in for example most schemes for second-order
optical parametric amplification.

If now the crystal frame is rotated with respect to the laboratory frame, as shown in Fig. 2, we
should make up our mind in which system we would like the wave propagation to be analyzed. In
some cases, it might be so that the output of the experimental setup is most easily interpreted in
the coordinate frame of the crystal, but in most cases, we have a fixed laboratory frame (fixed by
the orientation of the laser, positions of mirrors, etc.) in which we would like to express the wave
propagation and interaction between light and matter.
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Figure 2. The setup in which the crystal frame is rotated relative the laboratory frame.

In Fig. 2, we would, in order to express the nonlinear process in the laboratory frame, like to

obtain the naturally appearing susceptibilities χ
(2)
xyz, χ

(2)
xxx, etc., in the laboratory frame instead, as

χ
(2)
x′y′z′ , χ

(2)
x′x′x′ , etc.

Just to summarize, why are then the transformation rules and spatial symmetries of the meduim
so important?

• Hard to make physical conclusions about generated optical fields unless orientation of the
laboratory and crystal frames coincide.

• Spatial symmetries often significantly simplifies the wave propagation problem (by choosing a
suitable polarization state and direction of propagation of the light, etc.).

• Useful for reducing the number of necessary elements of the susceptibility tensors (using Neu-
mann’s principle).

Optical properties in rotated coordinate frames

Consider two coordinate systems described by Cartesian coordinates xα and x′α, respectively. The
coordinate systems are rotated with respect to each other, and the relation between the coordinates
are described by the [3 × 3] transformation matrix Rab as

x′ = Rx ⇔ x′α = Rαβxβ , [B.& C. (5.40)]

where x = (x, y, z)T and x′ = (x′, y′, z′)T are column vectors. The inverse transformation between
the coordinate systems is similarly given as

x = R−1x′ ⇔ xβ = Rαβx
′

α. [B.& C. (5.41)]
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Figure 3. Illustration of proper rotation of the crystal frame (x, y, z) relative to the laboratory
reference frame (x′, y′, z′), by means of x′α = Rαβxβ with det (R) = 1.
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Figure 4. The coordinate transformations (a) x = (x, y, z) 7→ x′ = (−x,−y, z), constituting a
proper rotation around the z-axis, and (b) the space inversion x 7→ x′ = −x, an improper rotation
corresponding to, for example, a rotation around the z-axis followed by an inversion in the xy-plane.

We should notice that there are two types of rotations that are encountered as transformations:

• Proper rotations, for which det(R) = 1. (Righthanded systems keep being righthanded, and
lefthanded systems keep being lefthanded.)

• Improper rotations, for which det(R) = −1. (Righthanded systems are transformed into left-
handed systems, and vice versa.)

The electric field E(r, t) and electric polarization density P(r, t) are both polar quantities that
transform in the same way as regular Cartesian coordinates, and hence we have descriptions of
these quantities in coordinate systems (x, y, z) and (x′, y′, z′) related to each other as

E′

µ(r, t) = RµuEu(r, t) ⇔ Eu(r, t) = RµuE
′

µ(r, t),

and

P ′

µ(r, t) = RµuPu(r, t) ⇔ Pu(r, t) = RµuP
′

µ(r, t),

respectively. Using these transformation rules, we will now derive the form of the susceptibilities
in rotated coordinate frames.

First order polarization density in rotated coordinate frames

From the transformation rule for the electric polarization density above, using the standard form as
we previously have expressed the electric field dependence, we have for the first order polarization
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density in the primed coordinate system

P (1)
µ

′(r, t) = RµuP
(1)
u (r, t)

= Rµuε0

∫

∞

−∞
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∞

−∞
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ua (−ω;ω)RαaE

′
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= ε0

∫

∞

−∞

χ(1)
µα

′(−ω;ω)E′

α(ω) exp(−iωt) dω

where
χ(1)

µα
′(−ω;ω) = RµuRαaχ

(1)
ua (−ω;ω) [B.& C. (5.45)]

is the linear electric susceptibility taken in the primed coordinate system.

Second order polarization density in rotated coordinate frames

Similarly, we have the second order polarization density in the primed coordinate system as

P (2)
µ

′(r, t) = RµuP
(2)
u (r, t)
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∫

∞

−∞

∫

∞

−∞
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∞

−∞

∫

∞

−∞

χ
(2)
uab(−ωσ;ω1, ω2)RαaE

′
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∫

∞
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∫

∞
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χ
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′
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χ

(2)
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(2)
uab(−ωσ;ω1, ω2) [B.& C. (5.46)]

is the second order electric susceptibility taken in the primed coordinate system.

Higher order polarization densities in rotated coordinate frames

In a manner completely analogous to the second order susceptibility, the transformation rule be-
tween the primed and unprimed coordinate systems can be obtained for the nth order elements of
the electric susceptibility tensor as

χ
(n)
µα1···αn

′(−ωσ;ω1, . . . , ωn) = RµuRα1a1
· · ·Rαnan

χ
(n)
ua1···an

(−ωσ;ω1, . . . , ωn). [B.& C. (5.47)]

Crystallographic point symmetry groups

Typically, a particular point symmetry group of the medium can be described by the generating

matrices that describe the minimal set of transformation matrices (describing a set of symmetry
operations) that will be necessary for the reduction of the constitutive tensors. Two systems are
widely used for the description of point symmetry groups:2

• The International system, e. g. 4̄3m, m3m, 422, etc.
• The Schönflies system, e. g. Td, Oh, D4, etc.

The crystallographic point symmetry groups may contain any of the following symmetry oper-
ations:

1. Rotations through integral multiples of 2π/n about some axis. The axis is called the n-fold
rotation axis. It is in solid state physics shown [1–3] that a Bravais lattice can contain only 2-,
3-, 4-, or 6-fold axes, and since the crystallographic point symmetry groups are contained in the
Bravais lattice point groups, they too can only have these axes.

2 C. f. Table 2 of the handed out Hartmann’s An Introduction to Crystal Physics.
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2. Rotation-reflections. Even when a rotation through 2π/n is not a symmetry element,
sometimes such a rotation followed by a reflection in a plane perpendicular to the axis may be a
symmetry operation. The axis is then called an n-fold rotation-reflection axis. For example, the
groups S6 and S4 have 6- and 4-fold rotation-reflection axes.

3. Rotation-inversions. Similarly, sometimes a rotation through 2π/n followed by an inversion
in a point lying on the rotation axis is a symmetry element, even though such a rotation by itself
is not. The axis is then called an n-fold rotation-inversion axis. However, the axis in S6 is only a
3-fold rotation-inversion axis.

4. Reflections. A reflection takes every point into its mirror image in a plane, known as a
mirror plane.

5. Inversions. An inversion has a single fixed point. If that point is taken as the origin, then
every other point r is taken into −r.

Schönflies notation for the non-cubic crystallographic point groups

The twenty-seven non-cubic crystallographic point symmetry groups may contain any of the fol-
lowing symmetry operations, here given in Schönflies notation3:

Cn These groups contain only an n-fold rotation axis.

Cnv In addition to the n-fold rotation axis, these groups have a mirror plane that contains
the axis of rotation, plus as many additional mirror planes as the existence of the
n-fold axis requires.

Cnh These groups contain in addition to the n-fold rotation axis a single mirror plane
that is perpendicular to the axis.

Sn These groups contain only an n-fold rotation-reflection axis.

Dn In addition to the n-fold rotation axis, these groups contain a 2-fold axis perpendic-
ular to the n-fold rotation axis, plus as many additional 2-fold axes as are required
by the existence of the n-fold axis.

Dnh These (the most symmetric groups) contain all the elements of Dn plus a mirror
plane perpendicular to the n-fold axis.

Dnd These contain the elements of Dn plus mirror planes containing the n-fold axis, which
bisect the angles between the 2-fold axes.

Neumann’s principle

Neumann’s principle simply states that any type of symmetry which is exhibited by the point

symmetry group of the medium is also possessed by every physical property of the medium.
In other words, we can reformulate this for the optical properties as: the susceptibility tensors

of the medium must be left invariant under any transformation that also is a point symmetry

operation of the medium, or

χ
(n)′

µα1···αn
(−ωσ;ω1, . . . , ωn) = χ

(n)
µα1···αn

(−ωσ;ω1, . . . , ωn),

where the tensor elements in the primed coordinate system are transformed according to

χ
(n)′

µα1···αn
(−ωσ;ω1, . . . , ωn) = RµuRα1a1

· · ·Rαnan
χ

(n)
ua1···an

(−ωσ;ω1, . . . , ωn),

where the [3 × 3] matrix R describes a point symmetry operation of the system.

3 In Schönflies notation, C stands for “cyclic”, D for “dihedral”, and S for “spiegel”. The
subscripts h, v, and d stand for “horizontal”, “vertical”, and “diagonal”, respectively, and refer
to the placement of the placement of the mirror planes with respect to the n-fold axis, always
considered to be vertical. (The “diagonal” planes in Dnd are vertical and bisect the angles between
the 2-fold axes)
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Inversion properties

If the coordinate inversion Rαβ = −δαβ , is a symmetry operation of the medium (i. e. if the medium
possess so-called inversion symmetry), then it turns out that

χ
(n)
µα1···αn

= 0

for all even numbers n. (Question: Is this symmetry operation a proper or an improper rotation?)

Euler angles

As a convenient way of expressing the matrix of proper rotations, one may use the Euler angles of
classical mechanics,4

R(ϕ, ϑ, ψ) = A(ψ)B(ϑ)C(ϕ),

where

A(ψ) =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



 , B(ϑ) =





1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ



 , C(ϕ) =





cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1



 .

Example of the direct inspection technique applied to tetragonal media

Neumann’s principle is a highly useful technique, with applications in a wide range of disciplines in
physics. In order to illustrate this, we will now apply Neumann’s principle to a particular problem,
namely the reduction of the number of elements of the second order electric susceptibility tensor,
in a tetragonal medium belonging to point symmetry group 422.

422

Figure 5. An object5 possessing the symmetries of point symmetry group 422.

By inspecting Tables 2 and 3 of Hartmann’s An introduction to Crystal Physics6 one find that the
point symmetry group 422 of tetragonal media is described by the generating matrices

M4 =





1 0 0
0 −1 0
0 0 −1



 ,

[

twofold rotation
about x1 axis

]

and

M7 =





0 −1 0
1 0 0
0 0 1



 .

[

fourfold rotation
about x3 axis

]

4 C. f. Herbert Goldstein, Classical Mechanics (Addison-Wesley, London, 1980).
5 The figure illustrating the point symmetry group 422 is taken from N. W. Ashcroft and

N. D. Mermin, Solid state physics (Saunders College Publishing, Orlando, 1976), page 122.
6 Ervin Hartmann, An Introduction to Crystal Physics (University of Cardiff Press, International

Union of Crystallography, 1984), ISBN 0-906449-72-3. Notice that there is a printing error in
Table 3, where the twofold rotation about the x3-axis should be described by a matrix denoted
“M2”, and not “M1” as written in the table.
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Does the 422 point symmetry group possess inversion symmetry?

In Fig. 6, the steps involved for transformation of the object into an inverted coordinate frame are
shown.

x1

x2

x3

x′1
x′2

x′3

x′′1
x′′2

x′′3

Figure 6. Transformation into an inverted coordinate system (x′′, y′′, z′′) = (−x,−y,−z).

The result of the sequence in Fig. 6 is an object which cannot be reoriented in such a way that one
obtains the same shape as we started with for the non-inverted coordinate system, and hence the
object of point symmetry group 422 does not possess inversion symmetry.

Step one – Point symmetry under twofold rotation around the x1-axis

Considering the point symmetry imposed by the R = M4 matrix, we find that (for simplicity
omitting the frequency arguments of the susceptibility tensor) the second order susceptibility in
the rotated coordinate frame is described by the diagonal elements

χ
(2)′

111 = R1µR1αR1βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

R1µR1αR1βχ
(2)
µαβ

=
3

∑

µ=1

3
∑

α=1

3
∑

β=1

δ1µδ1αδ1βχ
(2)
µαβ = χ

(2)
111, (identity)

and

χ
(2)′

222 = R2µR2αR2βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

R2µR2αR2βχ
(2)
µαβ

=
3

∑

µ=1

3
∑

α=1

3
∑

β=1

(−δ2µ)(−δ2α)(−δ2β)χ
(2)
µαβ = −χ

(2)
222

= {Neumann′s principle} = χ
(2)
222 = 0

which, by noticing that the similar form R3α = −δ3α holds for the 333-component (i. e. the
zzz-component), also gives χ333 = −χ333 = 0. Further we have for the 231-component

χ
(2)′

231 = R2µR3αR1βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

R2µR3αR1βχ
(2)
µαβ

=
3

∑

µ=1

3
∑

α=1

3
∑

β=1

(−δ2µ)(−δ3α)δ1βχ
(2)
µαβ = χ

(2)
231, (identity)
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etc., and by continuing in this manner for all 27 elements of χ
(2)′

µαβ, one finds that the symmetry
operation R = M4 leaves us with the tensor elements listed in Table 1.

Zero elements Identities (no further info)

χ
(2)
112, χ

(2)
113, χ

(2)
121, χ

(2)
131,

χ
(2)
211, χ

(2)
222, χ

(2)
223, χ

(2)
232, (all other 13 elements)

χ
(2)
233, χ

(2)
311, χ

(2)
322, χ

(2)
323,

χ
(2)
332, χ

(2)
333

Table 1. Reduced set of tensor elements after the symmetry operation R = M4.

Step two – Point symmetry under fourfold rotation around the x3-axis

Proceeding with the next point symmetry operation, described by R = M7, one finds for the
remaining 13 elements that, for example, for the 123-element

χ
(2)′

123 = R1µR2αR3βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

R1µR2αR3βχ
(2)
µαβ

=
3

∑

µ=1

3
∑

α=1

3
∑

β=1

(−δ2µ)δ1αδ3βχ
(2)
µαβ = −χ

(2)
213

= {Neumann′s principle} = χ
(2)
123,

and for the 132-element

χ
(2)′

132 = R1µR3αR2βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

R1µR3αR2βχ
(2)
µαβ

=
3

∑

µ=1

3
∑

α=1

3
∑

β=1

(−δ2µ)δ3αδ1βχ
(2)
µαβ = −χ

(2)
231

= {Neumann′s principle} = χ
(2)
132,

while the 111-element (which previously, by using the R = M4 point symmetry, just gave an
identity with no further information) now gives

χ
(2)′

111 = R1µR1αR1βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

R1µR1αR1βχ
(2)
µαβ

=

3
∑

µ=1

3
∑

α=1

3
∑

β=1

(−δ2µ)(−δ2α)(−δ2β)χ
(2)
µαβ = −χ

(2)
222

= {from previous result for χ
(2)
222} = 0

= {Neumann′s principle} = χ
(2)
111.

By (again) proceeding for all 27 elements of χ
(2)′

µαβ , one finds the set of tensor elements as listed in
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Table 2. (See also the tabulated set in Butcher and Cotter’s book, Table A3.2, page 299.)

Zero elements Nonzero elements

χ
(2)
111, χ

(2)
112, χ

(2)
113, χ

(2)
121, χ

(2)
122, χ

(2)
123 = −χ

(2)
213,

χ
(2)
131, χ

(2)
133, χ

(2)
211, χ

(2)
212, χ

(2)
221, χ

(2)
132 = −χ

(2)
231,

χ
(2)
222, χ

(2)
223, χ

(2)
232, χ

(2)
233, χ

(2)
311, χ

(2)
321 = −χ

(2)
312,

χ
(2)
313, χ

(2)
322, χ

(2)
323, χ

(2)
331, χ

(2)
332, χ

(2)
333 (6 nonzero, 3 independent)

Table 2. Reduced set of tensor elements after symmetry operations R = M4 and R = M7.
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