
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 6

Assembly of independent molecules

So far the description of the interaction between light and matter has been in a very general form,
where it was assumed merely that the interaction is local, and in the electric dipolar approximation,
where magnetic dipolar and electric quadrupolar interactions (as well as higher order terms) were
neglected. The ensemble of molecules has so far no constraints in terms of composition or mutual
interaction, and the electric dipolar operator is so far taken for the whole ensemble of molecules,
rather than as the dipole operator for the individual molecules.
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Figure 1. The ensemble of identical, similarly oriented, and mutually independent molecules.

For many practical applications, however, the obtained general form is somewhat inconvenient
when it comes to the numerical evaluation of the susceptibilities, since tables of wave functions,
transition frequencies and their corresponding electric dipole moments etc. often are tabulated
exclusively for the individual molecules themselves. Thus, we will now apply the obtained general
theory to an ensemble of identical molecules, making a transition from the wave function and
electric dipole operator of the whole ensemble to the wave function and electric dipole operator
of the individual molecule, and find an explicit form of the electric susceptibilities in terms of the
quantum mechanical matrix elements of the molecular dipole operator.

We will now apply three assumptions of the ensemble of molecules, which introduce a significant
simplification to the task of expressing the susceptibilities and macroscopic polarization density in
terms of the individual molecular properties:

1. The molecules of the ensemble are all identical.
2. The molecules of the ensemble are mutually non-interacting.
3. The molecules of the ensemble are identically oriented.

From a wave functional approach, it is straightforward to make the transition from the de-
scription of the ensemble down to the molecular level in a strict quantum mechanical perspective
(as shown in Butcher and Cotters book). However, from a practical engineering point of view,
the results are quite intuitively derived if we make the following observations, which immediately
follow from the assumptions listed above:

• The positions of the individual molecules does not affect the electric dipole moment of the
whole ensemble in V , if we neglect the mutual interaction between the molecules. (This holds
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only if the molecules are neutrally charged, since they otherwise could build up a total electric
dipole moment of the ensemble.)

• Since the mutual interaction between the molecules is neglected, we may just as well con-
sider the individual molecules as constituting a set of “sub-ensembles” of the general ensemble
picture. In this picture, all quantum mechanical expectation values, involved commutators,
matrix elements, etc., should be considered for each subensemble instead, and the macroscopic
polarization density will in this case become

P(r, t) =

{
the number of molecules

within the volume V

}

×

{
the expectation value of the
molecular dipole operator

}

{the volume V }
.
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Figure 2. The general ensemble seen as an ensemble of identical mono-molecular sub-ensembles.

Assuming there are M mutually non-interacting and similarly oriented molecules in the volume
V , the macroscopic polarization density of the medium can be written as

P(r, t) =
1

V
〈Q̂〉 =

1

V
〈−e

∑

j

r̂j

︸ ︷︷ ︸

electrons

+ e
∑

k

Zkr̂k

︸ ︷︷ ︸

nuclei

〉

= {arrange terms as sum over the molecules of the ensemble}

=
1

V
〈

M∑

m=1

(

−e
∑

j

r̂
(m)
j

︸ ︷︷ ︸

electrons

+ e
∑

k

Z
(m)
k r̂

(m)
k

︸ ︷︷ ︸

nuclei

)

︸ ︷︷ ︸

molecular elec. dipole operator, er̂(m)

〉

︸ ︷︷ ︸

electric dipole moment of ensemble

=
1

V
〈

M∑

m=1

er̂(m)〉

= {the molecules are mutually noninteracting}

=
1

V

M∑

m=1

〈er̂(m)〉

= {the molecules are identical and similarly oriented}

=
1

V

M∑

m=1

〈er̂〉

= N〈er̂〉
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where N = M/V is the number of molecules per unit volume, and

〈er̂〉 = Tr[ˆ̺(t)er̂]

is the expectation value of the mono-molecular electric dipole operator, with ˆ̺(t) (that is to say,
ρ̂(t) with a “kink”1 to indicate the difference to the density operator of the general ensemble) is
the molecular density operator. Notice that the form P(r, t) = N〈er̂〉 is identical to the previous
form for the general ensemble, though with the factor 1/V replaced by N = M/V , and with the
electric dipole operator Q̂α of the ensemble replaced by the molecular dipole moment operator er̂α.

When making this transition, the condition that the molecules are mutually independent is
simply a statement that we locally assume the superposition principle of the properties of the
molecules (wave functions, electric dipole moments, etc.) to hold.

Going in the limit of non-interacting molecules, we may picture the situation as in Fig. 2,
with each molecule defining a sub-ensemble, which we are free to choose as our “small volume” of
charged particles. As long as we do not make any claim to determine the exact individual positions
of the charged particles together with their respective momentum (or any other pair of canonical
variables which would violate the Heisenberg uncertainty relation), this is a perfectly valid picture,
which provides the statistical expectation values of any observable property of the medium as M/V
times the average statistical molecular observations.

The previously described operators of a general ensemble of charged particles should in this case
be replaced by their corresponding mono-molecular equivalents, as listed in the following table.

General Molecular
ensemble representation

Q̂µ → er̂µ (Electric dipole operator)
ρ̂0 → ˆ̺0 (Density operator of thermal equilibrium)

ρ̂n(t) → ˆ̺n(t) (nth order term of density operator)
Ĥ0 → Ĥ0 (Hamiltonian of thermal equilibrium)
1/V → N = M/V (Number density of molecules)
ρ0(a) → ̺0(a) (Molecular population density at state |a〉)

Whenever an operator is expressed in the interaction picture, we should keep in mind that the
corresponding time development operators Û0(t), which originally were expressed in terms of the
thermal equilibrium Hamiltonian Ĥ0 of the ensemble, now should be expressed in terms of the
mono-molecular thermal equilibrium Hamiltonian Ĥ0.

The matrix elements of the mono-molecular electric dipole operator, taken in the interaction
picture, become

〈a|er̂α(t)|b〉 = 〈a|Û0(−t)er̂αÛ0(t)|b〉

= {the closure principle, B.&C. Eq. (3.11), [ÔÔ′]ab =
∑

k

OakOkb}

=
∑

k

∑

l

〈a|Û0(−t)|k〉〈k|er̂α|l〉〈l|Û0(t)|b〉

= {energy representation, B.&C. Eq. (4.54), [Û0(t)]ab = exp(−iEat/~)δab}

=
∑

k

∑

l

exp(−iEa(−t)/~)δak〈k|er̂α|l〉 exp(−iElt/~)δlb

= 〈a|er̂α|b〉 exp[i (Ea − Eb)t/~
︸ ︷︷ ︸

≡Ωabt

]

= 〈a|er̂α|b〉 exp(iΩabt),

(3)

1 kink n. 1. a sharp twist or bend in a wire, rope, hair, etc. [Collins Concise Dictionary,
Harper-Collins (1995)].
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where Ωab = (Ea−Eb)/~ is the molecular transition frequency between the molecular states |a〉 and
|b〉. We may thus, at least in some sense, interpret the interaction picture for the matrix elements
of the molecular operators as an out-separation of the naturally occurring transition frequencies
associated with a change from state |a〉 to |b〉 of the molecule.

First order electric susceptibility

From the general form of the first order (linear) electric susceptibility, as derived in the previous
lecture, one obtains

χ(1)
µα(−ω; ω) = −

N

ε0i~

∫ 0

−∞

Tr{ ˆ̺0[er̂µ, er̂α(τ )]} exp(−iωτ ) dτ

= −
Ne2

ε0i~

∫ 0

−∞

∑

a

〈a| ˆ̺0(r̂µr̂α(τ ) − r̂α(τ )r̂µ)|a〉 exp(−iωτ ) dτ

= {the closure principle}

= −
Ne2

ε0i~

∫ 0

−∞

∑

a

∑

k

〈a| ˆ̺0|k〉〈k|r̂µr̂α(τ ) − r̂α(τ )r̂µ|a〉 exp(−iωτ ) dτ

= {use that 〈a| ˆ̺0|k〉 = ̺0(a)δak}

= −
Ne2

ε0i~

∫ 0

−∞

∑

a

̺0(a)
[
〈a|r̂µr̂α(τ )|a〉 − 〈a|r̂α(τ )r̂µ|a〉

]
exp(−iωτ ) dτ

= {the closure principle again}

= −
Ne2

ε0i~

∫ 0

−∞

∑

a

̺0(a)
∑

b

[
〈a|r̂µ|b〉〈b|r̂α(τ )|a〉 − 〈a|r̂α(τ )|b〉〈b|r̂µ|a〉

]
exp(−iωτ ) dτ

= {Use results of Eq. (3) and shorthand notation 〈a|r̂α|b〉 = rα
ab}

= −
Ne2

ε0i~

∑

a

̺0(a)
∑

b

∫ 0

−∞

[
rµ
abr

α
ba exp(iΩbaτ ) − rα

abr
µ
ba exp(−iΩbaτ )

]
exp(−iωτ ) dτ

= {evaluate integral

∫ 0

−∞

exp(iCτ) dτ → 1/(iC)}

= −
Ne2

ε0i~

∑

a

̺0(a)
∑

b

[ rµ
abr

α
ba

i(Ωba − ω)
−

rα
abr

µ
ba

−i(Ωba + ω)

]

=
Ne2

ε0~

∑

a

̺0(a)
∑

b

( rµ
abr

α
ba

Ωba − ω
+

rα
abr

µ
ba

Ωba + ω

)

.

This result, which was derived entirely under the assumption that all resonances of the medium
are located far away from the angular frequency of the light, possesses a new type of symmetry,
which can be seen if we make the interchange

(−ω, µ) ⇌ (ω, α),

which by using the above result for the linear susceptibility gives

χ(1)
αµ(ω;−ω) =

Ne2

ε0~

∑

a

̺0(a)
∑

b

( rα
abr

µ
ba

Ωba + ω
+

rµ
abr

α
ba

Ωba − ω

)

= {change order of appearance of the terms}

=
Ne2

ε0~

∑

a

̺0(a)
∑

b

( rµ
abr

α
ba

Ωba − ω
+

rα
abr

µ
ba

Ωba + ω

)

= χ(1)
µα(−ω; ω),

which is a signature of the overall permutation symmetry that applies to nonresonant interactions.
With this result, the reason for the peculiar notation with “(−ω; ω)” should be all clear, namely
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that it serves as an explicit way of notation of the overall permutation symmetry, whenever it
applies.

It should be noticed that while intrinsic permutation symmetry is a general property that
solely applies to nonlinear optical interactions, the overall permutation symmetry applies to linear
interactions as well.

Second order electric susceptibility

In similar to the linear electric susceptibility, starting from the general form of the second order
(quadratic) electric susceptibility, one obtains

χ
(2)
µαβ(−ωσ; ω1, ω2)

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

Tr{ ˆ̺0[[r̂µ, r̂α(τ1)], r̂β(τ2)]} exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

∑

a

〈a| ˆ̺0[ [r̂µ, r̂α(τ1)]
︸ ︷︷ ︸

r̂µr̂α(τ1)−r̂α(τ1)r̂µ

, r̂β(τ2)]|a〉 exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

= {expand the commutator}

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

∑

a

(

〈a| ˆ̺0r̂µr̂α(τ1)r̂β(τ2)|a〉 − 〈a| ˆ̺0r̂α(τ1)r̂µr̂β(τ2)|a〉

− 〈a| ˆ̺0r̂β(τ2)r̂µr̂α(τ1)|a〉 + 〈a| ˆ̺0r̂β(τ2)r̂α(τ1)r̂µ|a〉
)

exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

= {apply the closure principle and Eq. (3)}

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

∑

a

∑

k

∑

b

∑

c

(

〈a| ˆ̺0|k〉〈k|r̂µ|b〉〈b|r̂α(τ1)|b〉〈c|r̂β(τ2)|a〉

− 〈a| ˆ̺0|k〉〈k|r̂α(τ1)|b〉〈b|r̂µ|c〉〈c|r̂β(τ2)|a〉

− 〈a| ˆ̺0|k〉〈k|r̂β(τ2)|b〉〈b|r̂µ|c〉〈c|r̂α(τ1)|a〉

+ 〈a| ˆ̺0|k〉〈k|r̂β(τ2)|b〉〈b|r̂α(τ1)|c〉〈c|r̂µ|a〉
)

exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

= {use that 〈a| ˆ̺0|k〉 = ̺0(a)δak and apply Eq. (3)}

=
Ne3

ε0(i~)2
1

2!
S

∑

a

̺0(a)
∑

b

∑

c

∫ 0

−∞

∫ τ1

−∞

{

rµ
abr

α
bcr

β
ca exp[i(Ωbcτ1 + Ωcaτ2)]

− rα
abr

µ
bcr

β
ca exp[i(Ωabτ1 + Ωcaτ2)] − rβ

abr
µ
bcr

α
ca exp[i(Ωcaτ1 + Ωabτ2)]

+ rβ
abr

α
bcr

µ
ca exp[i(Ωbcτ1 + Ωabτ2)]

}

exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

=
Ne3

ε0(i~)2
1

2!
S

∑

a

̺0(a)
∑

b

∑

c

∫ 0

−∞

{ rµ
abr

α
bcr

β
ca

i(Ωca − ω2)
exp[i (Ωbc + Ωca)

︸ ︷︷ ︸

=Ωba

τ1]

−
rα
abr

µ
bcr

β
ca

i(Ωca − ω2)
exp[i (Ωab + Ωca)

︸ ︷︷ ︸

=Ωcb

τ1] −
rβ
abr

µ
bcr

α
ca

i(Ωab − ω2)
exp[i (Ωca + Ωab)

︸ ︷︷ ︸

=Ωcb

τ1)]

+
rβ
abr

α
bcr

µ
ca

i(Ωab − ω2)
exp[i (Ωbc + Ωab)

︸ ︷︷ ︸

=−Ωca

τ1]
}

exp[−i (ω1 + ω2)
︸ ︷︷ ︸

=ωσ

τ1] dτ1

=
Ne3

ε0(i~)2
1

2!
S

∑

a

̺0(a)
∑

b

∑

c

{

−
rµ
abr

α
bcr

β
ca

(Ωca − ω2)(Ωba − ωσ)
+

rα
abr

µ
bcr

β
ca

(Ωca − ω2)(Ωcb − ωσ)

+
rβ
abr

µ
bcr

α
ca

(Ωab − ω2)(Ωcb − ωσ)
−

rβ
abr

α
bcr

µ
ca

(Ωab − ω2)(−Ωca − ωσ)

}

. . . continued on next page . . .
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. . . continuing from previous page . . .

=
Ne3

ε0~2

1

2!
S

∑

a

̺0(a)
∑

b

∑

c

{ rµ
abr

α
bcr

β
ca

(Ωac + ω2)(Ωab + ωσ)
−

rα
abr

µ
bcr

β
ca

(Ωac + ω2)(Ωbc + ωσ)

−
rβ
abr

µ
bcr

α
ca

(Ωba + ω2)(Ωbc + ωσ)
+

rβ
abr

α
bcr

µ
ca

(Ωba + ω2)(Ωca + ωσ)

}

.

Now it is easily seen that if we, for example, interchange

(−ωσ, µ) ⇋ (ω2, β),

one obtains

χ
(2)
βαµ(ω2; ω1,−ωσ)

=
Ne3

ε0~2

1

2!
S

∑

a

̺0(a)
∑

b

∑

c

{ rβ
abr

α
bcr

µ
ca

(Ωac − ωσ)(Ωab − ω2)
−

rα
abr

β
bcr

µ
ca

(Ωac − ωσ)(Ωbc − ω2)

−
rµ
abr

β
bcr

α
ca

(Ωba − ωσ)(Ωbc − ω2)
+

rµ
abr

α
bcr

β
ca

(Ωba − ωσ)(Ωca − ω2)

}

= {use Ωab = −Ωba, etc.}

=
Ne3

ε0~2

1

2!
S

∑

a

̺0(a)
∑

b

∑

c

{ rβ
abr

α
bcr

µ
ca

(Ωca + ωσ)(Ωba + ω2)
︸ ︷︷ ︸

identify 4th term

−
rα
abr

β
bcr

µ
ca

(Ωca + ωσ)(Ωcb + ω2)

−
rµ
abr

β
bcr

α
ca

(Ωab + ωσ)(Ωcb + ω2)
+

rµ
abr

α
bcr

β
ca

(Ωab + ωσ)(Ωac + ω2)
︸ ︷︷ ︸

identify 1st term

}

= {interchange dummy indices a → c → b → a in 2nd term}

= {interchange dummy indices a → b → c → a in 3rd term}

=
Ne3

ε0~2

1

2!
S

∑

a

̺0(a)
∑

b

∑

c

{ rβ
abr

α
bcr

µ
ca

(Ωca + ωσ)(Ωba + ω2)
︸ ︷︷ ︸

identify 4th term

−
rα
carβ

abr
µ
bc

(Ωbc + ωσ)(Ωba + ω2)
︸ ︷︷ ︸

identify as 3rd term

−
rµ
bcr

β
carα

ab

(Ωbc + ωσ)(Ωac + ω2)
︸ ︷︷ ︸

identify as 2nd term

+
rµ
abr

α
bcr

β
ca

(Ωab + ωσ)(Ωac + ω2)
︸ ︷︷ ︸

identify 1st term

}

= χ
(2)
µβα(−ωσ; ω1, ω2),

that is to say, the second order susceptibility is left invariant under any of the (2+1)! = 6 possible
pairwise permutations of (−ωσ, µ), (ω1, α), and (ω2, β); this is the overall permutation symmetry

for the second order susceptibility, and applies whenever the interaction is moved far away from
any resonance.

We recapitulate that when deriving the form of the nonlinear susceptibilities that lead to
intrinsic permutation symmetry, either in terms of polarization response functions in time domain
or in terms of a mechanical spring model, nothing actually had to be stated regarding the nature
of interaction. This is rather different from what we just obtained for the overall permutation
symmetry, as being a signature of a nonresonant interaction between the light and matter, and
this symmetry cannot (in contrary to the intrinsic permutation symmetry) be expressed unless the
origin of interaction is considered.2

2 It should though be noticed that the derivation of the susceptibilities still may be performed
within a mechanical spring model, as long as the resonance frequencies of the oscillator are removed
far from the angular frequencies of the present light.
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