
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 3

Susceptibility tensors in the frequency domain

The susceptibility tensors in the frequency domain arise when the electric field Eα(t) of the light
is expressed in terms of its Fourier transform Eα(ω), by means of the Fourier integral identity

Eα(t) =

∫ ∞

−∞

Eα(ω) exp(−iωt) dω = F
−1[Eα](t), (1′)

with inverse relation

Eα(ω) =
1

2π

∫ ∞

−∞

Eα(τ ) exp(iωτ ) dτ = F[Eα](ω). (1′′)

This convention of inclusion of the factor of 2π, as well as the sign convention, is commonly used
in quantum mechanics; however, it should be emphasized that this convention is not a commonly
adopted standard in optics, neither in linear nor in nonlinear optical regimes.

The sign convention here used leads to wave solutions of the form f(kz−ωt) for monochromatic
waves propagating in the positive z-direction, which might be somewhat more intuitive than the
alternative form f(ωt−kz), which is obtained if one instead apply the alternative sign convention.

The convention for the inclusion of 2π in the Fourier transform in Eq. (1′′) is here convenient
for description of electromagnetic wave propagation in the frequency domain (going from the time
domain description, in terms of the polarization response functions, to the frequency domain, in
terms of the linear and nonlinear susceptibilities), since it enables us to omit any multiple of 2π of
the Fourier transformed fields.

First order susceptibility tensor

By inserting Eq. (1′) is inserted into the previously obtained1 relation for the first order, linear
polarization density, one obtains

P (1)
µ (r, t) = ε0

∫ ∞

−∞

R(1)
µα(τ )Eα(r, t − τ ) dτ,

= {express Eα(r, t − τ ) in frequency domain}

= ε0

∫ ∞

−∞

R(1)
µα(τ )

∫ ∞

−∞

Eα(r, ω) exp[−iω(t − τ )] dω dτ,

= {change order of integration}

= ε0

∫ ∞

−∞

∫ ∞

−∞

R(1)
µα(τ )Eα(r, ω) exp(iωτ ) dτ exp(−iωt) dω,

= ε0

∫ ∞

−∞

χ(1)
µα(−ω; ω)Eα(r, ω) exp(−iωt) dω,

(2)

where the linear electric dipolar susceptibility,

χ(1)
µα(−ω; ω) =

∫ ∞

−∞

R(1)
µα(τ ) exp(iωτ ) dτ = F[R(1)

µα](ω), (3)

1 Expressions for the first order, second order, and nth order polarization densities were obtained
in lecture two.
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was introduced. In this expression for the susceptibility, ωσ = ω, and the reasons for the somewhat
peculiar notation of arguments of the susceptibility will be explained later on in the context of
nonlinear susceptibilities.

Second order susceptibility tensor

In similar to the linear susceptibility tensor, by inserting Eq. (1′) into the previously obtained
relation for the second order, quadratic polarization density, one obtains

P (2)
µ (r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

R
(2)
µαβ(τ1, τ2)Eα(r, ω1)Eβ(r, ω2)

× exp[−i(ω1(t − τ1) + ω2(t − τ2))] dτ1 dτ2 dω1 dω2

= ε0

∫ ∞

−∞

∫ ∞

−∞

χ
(2)
µαβ(−ωσ; ω1, ω2)Eα(r, ω1)Eβ(r, ω2) exp[−i (ω1 + ω2)

︸ ︷︷ ︸

≡ωσ

t] dω1 dω2

(4)

where the quadratic electric dipolar susceptibility,

χ
(2)
µαβ(−ωσ; ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞

R
(2)
µαβ(τ1, τ2) exp[i(ω1τ1 + ω2τ2)] dτ1 dτ2, (5)

was introduced. In this expression for the susceptibility, ωσ = ω1 + ω2, and the reason for the
notation of arguments should now be somewhat more clear: the first angular frequency argument
of the susceptibility tensor is simply the sum of all driving angular frequencies of the optical field.

The intrinsic permutation symmetry of R
(2)
µαβ(τ1, τ2), the second order polarization response

function, carries over to the second order susceptibility tensor as well, in the sense that

χ
(2)
µαβ(−ωσ; ω1, ω2) = χ

(2)
µβα(−ωσ; ω2, ω1),

i. e. the second order susceptibility is invariant under any of the 2! = 2 pairwise permutations of
(α, ω1) and (β, ω2).

Higher order susceptibility tensors

In similar to the linear and quadratic susceptibility tensors, by inserting Eq. (1′) into the previously
obtained relation for the nth order polarization density, one obtains

P (n)
µ (r, t) = ε0

∫ ∞

−∞

· · ·

∫ ∞

−∞

χ
(n)
µα1···αn

(−ωσ; ω1, . . . , ωn)Eα1
(r, ω1) · · ·Eαn

(r, ωn)

× exp[−i (ω1 + . . . + ωn)
︸ ︷︷ ︸

≡ωσ

t] dω1 · · · dωn,
(6)

where the nth order electric dipolar susceptibility,

χ
(n)
µα1···αn

(−ωσ; ω1, . . . , ωn) =

∫ ∞

−∞

· · ·

∫ ∞

−∞

R
(n)
µα1···αn

(τ1, . . . , τn) exp[i(ω1τ1+. . .+ωnτn)] dτ1 · · · dτn,

(7)
was introduced, and where, as previously,

ωσ = ω1 + ω2 + . . . + ωn.

The intrinsic permutation symmetry of R
(n)
µα1···αn

(τ1, . . . , τn), the nth order polarization re-
sponse function, also in this general case carries over to the nth order susceptibility tensor as well,
in the sense that

χ
(n)
µα1α2···αn

(−ωσ; ω1, ω2, . . . , ωn)

is invariant under any of the n! pairwise permutations of (α1, ω1), (α2, ω2), . . ., (αn, ωn).
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Monochromatic fields

It should at this stage be emphasized that even though the electric field via the Fourier integral
identity can be seen as a superposition of infinitely many infinitesimally narrow band monochro-
matic components, the superposition principle of linear optics, which states that the wave equation
may be independently solved for each frequency component of the light, generally does not hold
in nonlinear optics.

For monochromatic light, the electric field can be written as a superposition of a set of distinct
terms in time domain as

E(r, t) =
∑

k

Re[Eωk
exp(−iωkt)],

with the convention that the involved angular frequencies all are taken as positive, ωk ≥ 0, and
the electric field in the frequency domain simply becomes a superposition of delta peaks in the
spectrum,

E(r, ω) =
1

2π

∫ ∞

−∞

E(r, τ ) exp(iωτ ) dτ

= {express as monochromatic field}

=
1

2π

∑

k

∫ ∞

−∞

Re[Eωk
exp(−iωkτ )] exp(iωτ ) dτ

= {by definition}

=
1

4π

∑

k

∫ ∞

−∞

[Eωk
exp(i(ω − ωk)τ ) + E∗

ωk
exp(i(ω + ωk)τ )] dτ

=
1

2

∑

k

[

Eωk

1

2π

∫ ∞

−∞

exp(i(ω − ωk)τ ) dτ

︸ ︷︷ ︸

≡δ(ω−ωk)

+E∗
ωk

1

2π

∫ ∞

−∞

exp(i(ω + ωk)τ ) dτ

︸ ︷︷ ︸

≡δ(ω+ωk)

]

= {definition of the delta function}

=
1

2

∑

k

[Eωk
δ(ω − ωk) + E∗

ωk
δ(ω + ωk)].

By inserting this form of the electric field (taken in the frequency domain) into the polarization
density, one obtains the polarization density in the monochromatic form

P(n)(r, t) =
∑

ωσ≥0

Re[P(n)
ωσ

exp(−iωσt)],

with complex-valued Cartesian components at angular frequency ωσ given as

(P(n)
ωσ

)µ = 2ε0

∑

α1

· · ·
∑

αn

χ
(n)
µα1α2···αn

(−ωσ; ω1, ω2, . . . , ωn)(Eω1
)α1

(Eω2
)α2

· · · (Eωn
)αn

+ χ
(n)
µα1α2···αn

(−ωσ; ω2, ω1, . . . , ωn)(Eω2
)α1

(Eω1
)α2

· · · (Eωn
)αn

+ all other distinguishable terms

(8)

where, as previously, ωσ = ω1 + ω2 + . . . + ωn. In the right hand side of Eq. (8), the summation
is performed over all distinguishble terms, that is to say over all the possible combinations of
ω1, ω2, . . . , ωn that give rise to the particular ωσ. Within this respect, a certain frequency and
its negative counterpart are to be considered as distinct frequencies when appearing in the set.
In general, there are several possible combinations that give rise to a certain ωσ; for example
(ω, ω,−ω), (ω,−ω, ω), and (−ω, ω, ω) form the set of distinct combinations of optical frequencies
that give rise to optical Kerr-effect (a field dependent contribution to the polarization density at
ωσ = ω + ω − ω = ω).

A general conclusion of the form of Eq. (8), keeping the intrinsic permutation symmetry in
mind, is that only one term needs to be written, and the number of times this term appears
in the expression for the polarization density should consequently be equal to the number of
distinguishable combinations of ω1, ω2, . . . , ωn.
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Convention for description of nonlinear optical polarization

As a “recipe” in theoretical nonlinear optics, Butcher and Cotter provide a very useful convention
which is well worth to hold on to. For a superposition of monochromatic waves, and by invoking
the general property of the intrinsic permutation symmetry, the monochromatic form of the nth
order polarization density can be written as

(P (n)
ωσ

)µ = ε0

∑

α1

· · ·
∑

αn

∑

ω

K(−ωσ; ω1, . . . , ωn)χ
(n)
µα1···αn

(−ωσ; ω1, . . . , ωn)(Eω1
)α1

· · · (Eωn
)αn

.

(9)
The first summations in Eq. (9), over α1, . . . , αn, is simply an explicit way of stating that the
Einstein convention of summation over repeated indices holds. The summation sign

∑

ω, however,
serves as a reminder that the expression that follows is to be summed over all distinct sets of

ω1, . . . , ωn. Because of the intrinsic permutation symmetry, the frequency arguments appearing in
Eq. (9) may be written in arbitrary order.

By “all distinct sets of ω1, . . . , ωn”, we here mean that the summation is to be performed, as
for example in the case of optical Kerr-effect, over the single set of nonlinear susceptibilities that
contribute to a certain angular frequency as (−ω; ω, ω,−ω) or (−ω; ω,−ω, ω) or (−ω;−ω, ω, ω).
In this example, each of the combinations are considered as distinct, and it is left as an arbitary
choice which one of these sets that are most convenient to use (this is simply a matter of choosing
notation, and does not by any means change the description of the interaction).

In Eq. (9), the degeneracy factor K is formally described as

K(−ωσ; ω1, . . . , ωn) = 2l+m−np

where
p = the number of distinct permutations of ω1, ω2, . . . , ω1,

n = the order of the nonlinearity,

m = the number of angular frequencies ωk that are zero, and

l =

{
1, if ωσ 6= 0,
0, otherwise.

In other words, m is the number of DC electric fields present, and l = 0 if the nonlinearity we are
analyzing gives a static, DC, polarization density, such as in the previously (in the spring model)
described case of optical rectification in the presence of second harmonic fields (SHG).

A list of frequently encountered nonlinear phenomena in nonlinear optics, including the degen-
eracy factors as conforming to the above convention, is given in Butcher and Cotters book, Table
2.1, on page 26.

Note on the complex representation of the optical field

Since the observable electric field of the light, in Butcher and Cotters notation taken as

E(r, t) =
1

2

∑

ωk≥0

[Eωk
exp(−iωkt) + E∗

ωk
exp(iωkt)],

is a real-valued quantity, it follows that negative frequencies in the complex notation should be
interpreted as the complex conjugate of the respective field component, or

E−ωk
= E∗

ωk
.

Example: Optical Kerr-effect

Assume a monochromatic optical wave (containing forward and/or backward propagating compo-
nents) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R
3,
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with all spatial variation of the field contained in

Eω(z) = exEx
ω(z) + eyEy

ω(z) ∈ C
3.

Optical Kerr-effect is in isotropic media described by the third order susceptibility

χ
(3)
µαβγ(−ω; ω, ω,−ω),

with nonzero components of interest for the xy-polarized beam given in Appendix 3.3 of Butcher
and Cotters book as

χ(3)
xxxx = χ(3)

yyyy, χ(3)
xxyy = χ(3)

yyxx =

{
intr. perm. symm.

(α, ω) ⇋ (β, ω)

}

= χ(3)
xyxy = χ(3)

yxyx, χ(3)
xyyx = χ(3)

yxxy,

with
χ(3)

xxxx = χ(3)
xxyy + χ(3)

xyxy + χ(3)
xyyx.

The degeneracy factor K(−ω; ω, ω,−ω) is calculated as

K(−ω; ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From this set of nonzero susceptibilities, and using the calculated value of the degeneracy factor in
the convention of Butcher and Cotter, we hence have the third order electric polarization density

at ωσ = ω given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)], with

P(3)
ω =

∑

µ

eµ(P (3)
ω )µ

= {Using the convention of Butcher and Cotter}

=
∑

µ

eµ

[

ε0
3

4

∑

α

∑

β

∑

γ

χ
(3)
µαβγ(−ω; ω, ω,−ω)(Eω)α(Eω)β(E−ω)γ

]

= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}

= ε0
3

4
{ex[χ(3)

xxxxEx
ωEx

ωEx
−ω + χ(3)

xyyxEy
ωEy

ωEx
−ω + χ(3)

xyxyEy
ωEx

ωEy
−ω + χ(3)

xxyyEx
ωEy

ωEy
−ω]

+ ey[χ(3)
yyyyEy

ωEy
ωEy

−ω + χ(3)
yxxyEx

ωEx
ωEy

−ω + χ(3)
yxyxEx

ωEy
ωEx

−ω + χ(3)
yyxxEy

ωEx
ωEx

−ω]}

= {Make use of E−ω = E∗
ω and relations χ(3)

xxyy = χ(3)
yyxx, etc.}

= ε0
3

4
{ex[χ(3)

xxxxEx
ω|E

x
ω|

2 + χ(3)
xyyxEy

ω
2Ex∗

ω + χ(3)
xyxy|E

y
ω|

2Ex
ω + χ(3)

xxyyEx
ω|E

y
ω|

2]

+ ey[χ(3)
xxxxEy

ω|E
y
ω|

2 + χ(3)
xyyxEx

ω
2Ey∗

ω + χ(3)
xyxy|E

x
ω|

2Ey
ω + χ(3)

xxyyEy
ω|E

x
ω|

2]}

= {Make use of intrinsic permutation symmetry}

= ε0
3

4
{ex[(χ(3)

xxxx|E
x
ω|

2 + 2χ(3)
xxyy|E

y
ω|

2)Ex
ω + (χ(3)

xxxx − 2χ(3)
xxyy)Ey

ω
2Ex∗

ω

ey[(χ(3)
xxxx|E

y
ω|

2 + 2χ(3)
xxyy|E

x
ω|

2)Ey
ω + (χ(3)

xxxx − 2χ(3)
xxyy)Ex

ω
2Ey∗

ω .

For the optical field being linearly polarized, say in the x-direction, the expression for the polar-
ization density is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ(3)

xxxx|E
x
ω|

2Ex
ω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|

2) contribution to the
refractive index (cf. Butcher and Cotter §6.3.1).
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