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Lecture notes

Lecture 2

Nonlinear polarization density

From the introductory perturbation analysis of the all-classical anharmonic oscillator in the pre-
vious lecture, we now a priori know that it is possible to express the electric polarization density
as a power series in the electric field of the optical wave.

Loosely formulated, the electric polarization density in complex notation can be taken as the
series

Pµ(ωσ) = ε0[χ
(1)
µα(−ωσ; ωσ)Eα(ωσ)

︸ ︷︷ ︸

∼P
(1)
µ (ωσ)

+ χ
(2)
µαβ(−ωσ; ω1, ω2)Eα(ω1)Eβ(ω2)

︸ ︷︷ ︸

∼P
(2)
µ (ωσ), ωσ=ω1+ω2

+ χ
(3)
µαβγ(−ωσ; ω1, ω2, ω3)Eα(ω1)Eβ(ω2)Eγ(ω3)

︸ ︷︷ ︸

∼P
(3)
µ (ωσ), ωσ=ω1+ω2+ω3

+ . . . ]

where we adopted Einstein’s convention of summation for terms with repeated subscripts. (A more
formal formulation of the polarization density will be described later.)

Symmetries in nonlinear optics

There are essentially four classes of symmetries that we will encounter in this course:

[1] Intrinsic permutation symmetry:

χ
(3)
µαβγ(−ωσ; ω1, ω2, ω3) = χ

(3)
µβαγ(−ωσ; ω2, ω1, ω3)

= χ
(3)
µβγα(−ωσ; ω2, ω3, ω1)

= χ
(3)
µγβα(−ωσ; ω3, ω2, ω1),

that is to say, invariance under the n! possible permutations of (αk, ωk), k = 1, 2, . . . , n. This
principle applies generally to resonant as well as nonresonant media. (Described in this lecture.)

[2] Overall permutation symmetry:

χ
(3)
µαβγ(−ωσ; ω1, ω2, ω3) = χ

(3)
αµβγ(ω1;−ωσ, ω2, ω3)

= χ
(3)
αβµγ(ω1; ω2,−ωσ, ω3)

= χ
(3)
αβγµ(ω1; ω2, ω3,−ωσ),

that is to say, invariance under the (n + 1)! possible permutations of (µ,−ωσ), (αk, ωk), k =
1, 2, . . . , n. This principle applies to nonresonant media, where all optical frequencies appearing
in the formula for the susceptibility are removed far from the transition frequencies of the
medium. (Described in lecture 4.)

[3] Kleinman symmetry:

χ
(3)
µαβγ(−ωσ; ω1, ω2, ω3) = χ

(3)
αµβγ(−ωσ; ω1, ω2, ω3)

= χ
(3)
αβµγ(−ωσ; ω1, ω2, ω3)

= χ
(3)
αβγµ(−ωσ; ω1, ω2, ω3),
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that is to say, invariance under the (n+1)! possible permutations of the subscripts µ, α1, . . . , αn.
This principle is a consequence of the overall permutation symmetry, and applies in the low-
frequency limit of nonresonant media.

[4] Spatial symmetries, given by the point symmetry class of the medium. (Described in lecture 6.)

Conditions for observing nonlinear optical interactions

Loosely formulated, a nonlinear response between light and matter depends on one of two key
indgredients: either there is a resonance between the light wave and some natural oscillation mode
of the medium, or the light is sufficiently intense. Direct resonance can occur in isolated intervals
of the electromagnetic spectrum at
• ultraviolet and visible frequencies (1015 s−1) where the oscillator corresponds to an electronic

transition of the medium,
• infrared (1013 s−1), where the medium has vibrational modes, and
• the far infrared-microwave range (1011 s−1), where there are rotational modes. These interac-

tions are also called one-photon processes, and are schematically illustrated in Fig. 3.

|a〉

|b〉

h̄ω h̄ω

The one-photon transition.

Figure 3. Transition scheme of the one-photon process.

The lower frequency modes can be excited at optical frequencies (1015 s−1) through indirect reso-
nant processes in which the difference in frequencies and wave vectors of two light waves, called the
pump and Stokes wave, respectively, matches the frequency and wave vector of one of these lower
frequency modes. These three-frequency interactions are sometime called two-photon processes.
In the case where there “lower frequency” mode is an electronic transition or in the vibrational
range (in which case the Stokes frequency can be of the same order of magnitude as that of the
light wave), this process is called Raman scattering.

|a〉 (initial)

|c〉 (final)

|b〉

h̄ω1 h̄ω2

The Stokes Raman transition.

|a〉 (final)

|c〉 (initial)

|b〉

h̄ω1 h̄ω2

The Anti-Stokes Raman transition.

Figure 4. Transition schemes of stimulated Raman Scattering.

The stimulated Raman scattering is essentially a two-photon process in which one photon at ω1

is absorbed and one photon at ω2 is emitted, while the material makes a transition from the
initial state |a〉 to the final state |c〉, as shown in Fig. 4. Energy conservation requires the Raman
resonance frequency (electronic or vibrational) to satisfy h̄Ωca = h̄(ω1 − ω2), and hence we may
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classify the Stokes and Anti-Stokes transitions as

h̄Ωca > 0 ⇔ Stokes Raman

h̄Ωca < 0 ⇔ Anti − Stokes Raman

When the lower frequency mode instead is an acoustic mode of the material, the process is instead
called Brillouin scattering.

As will be shown explicitly later on in the course, optical resonance with transitions of the
material is an important tool for “boosting up” the nonlinearities, with enhanced possibilities of
applications. However, at single-photon resonance we have a strong absorption at the frequency
of the optical field, and in most cases this is a non-desirable effect, since it decreases the optical
intensity, even though it meanwhile also enhances the nonlinearity of the material.

However, by instead exploiting the two-photon resonance, the desired nonlinearity can be sig-
nificantly enhanced whilst at the same time the competing absorption process can be minimized
by avoiding coincidences between optical frequencies and single-photon resonances.

One general drawback with the resonant enhancement is that the response time of the polar-
ization density of the material is slowed down, affecting applications such as optical switching or
modulation, where speed is of importance.

Phenomenological description of the susceptibility tensors

Before entering the full quantum-mechanical formalism, we will assume the medium to possess a
temporal response described by time response functions R(t).

The very first step in the analysis is to express the electric polarization density, which in classical
electrodynamical terms is expressed as the sum over all M electric charges qk in a small volume V

centered at r,

P(r, t) =
1

V

M∑

k=1

qkrk(t),

as a series expansion

P(r, t) = P(0)(r, t) + P(1)(r, t) + P(2)(r, t) + . . . + P(n)(r, t) + . . . ,

where P(1)(r, t) is linear in the electric field, P(2)(r, t) is quadratic in the electric field, etc. The
field-independent P(0)(r, t) corresponds to eventually appearing static polarization of the medium.
It should be emphasized that any of these terms may be linear as well as nonlinear functions of
the electric field of the optical wave; i. e. an externally applied static electric field may together
with the electric field of the light interact through, for example, P(3)(r, t) to induce an electric
polarization that is linear in the optical field.

R(t − τ)

tt = τ

R = 0

Figure 9. Schematic form of a possible response function in time domain.

In the analysis that now is to follow, we will a priori assume that it is possible to express the
polarization density as a perturbation series. Later on, we will show how each of the terms can be
derived from a more stringent basis, where it also will be stated which conditions that must hold
in order to apply perturbation theory.
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Linear polarization response function

Since P(1)(r, t) is taken as linear in the electric field, we may express the linear polarization density
of the medium as being related to the optical field as

P (1)
µ (r, t) = ε0

∫
∞

−∞

T (1)
µα (t; τ )Eα(r, τ ) dτ, (7)

where T
(1)
µα (t; τ ) is a rank-two tensor that weights all contributions in time from the electric field

of the light. A few required properties of T
(1)
µα (t; τ ) can immediately be stated:

• Causality. We require that no optically induced contribution can occur before the field is

applied, i. e. T
(1)
µα (t; τ ) = 0 for t ≤ τ .

• Time invariance. Under most circumstances, we may in addition assume that the material

parameters are constant in time, such that P
(1)
µ (r, t′) is identical to the polarisation as induced

by the time-displaced electric field Eα(r, t′).

The second of these properties is essentially a manifestation of an adiabatically following change
of the carrier wave of the optical field.

By using Eq. (7), the time invariance of the constitutive relation gives that

P (1)
µ (r, t + t0) = ε0

∫
∞

−∞

T (1)
µα (t + t0; τ )Eα(r, τ ) dτ

=
{
Should equal to polarization induced by Eα(r, τ + t0)

}

= ε0

∫
∞

−∞

T (1)
µα (t; τ )Eα(r, τ + t0) dτ

=
{
τ ′ = τ + t0

}

= ε0

∫
∞

−∞

T (1)
µα (t; τ ′ − t0)Eα(r, τ ′) dτ ′,

from which we, by changing the “dummy” variable of integration back to τ , obtain the relation

T (1)
µα (t + t0; τ ) = T (1)

µα (t; τ − t0).

In particular, by setting t = 0 and replacing the arbitrary time displacement t0 by t, one finds that
the response of the medium depends only of the time difference τ − t,

T (1)
µα (t; τ ) = T (1)

µα (0; τ − t)

= R(1)
µα(τ − t)

where we defined the linear polarization response function R
(1)
µα(τ − t), being a rank-two tensor

depending only on the time difference τ − t.
To summarize, the linear contribution to the electric polarization density is given in terms of

the linear polarization response function as

P (1)
µ (r, t) = ε0

∫
∞

−∞

R(1)
µα(t − τ )Eα(r, τ ) dτ,

= ε0

∫
∞

−∞

R(1)
µα(τ ′)Eα(r, t − τ ′) dτ ′,

(8)

and the causality condition for the linear polarization response function requires that

R(1)
µα(τ − t) = 0, t ≤ τ,

and in addition, since the relation (8) is to hold for arbitrary time evolution of the electrical field,

and since the polarization density P
(1)
µ (r, t) and the electric field E

(1)
α (r, t) both are real-valued

quantities, we also require the polarization response function R
(1)
µα(τ−t) to be a real-valued function.
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Quadratic polarization response function

The second-order, quadratic polarization density can in similar to the linear one be phenomeno-
logically be written as the sum of all infinitesimal previous contributions in time. In this case,
we must though include the possibility that not all contributions origin in the same time scale,
and hence the proper formulation of the second order polarization density is as a two-dimensional
integral,

P (2)
µ (r, t) = ε0

∫
∞

−∞

∫
∞

−∞

T
(2)
µαβ(t; τ1, τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2. (9)

The tensor T
(2)
µαβ(t; τ1, τ2) uniquely determines the quadratic, second-order polarization of the

medium. However, the tensor T
(2)
µαβ(t; τ1, τ2) is not itself unique. To see this, we may express

the tensor as a sum of a symmetric part and an antisymmetric part,

T
(2)
µαβ(t; τ1, τ2) =

1

2

[

T
(2)
µαβ(t; τ1, τ2) + T

(2)
µβα(t; τ2, τ1)

]

︸ ︷︷ ︸

symmetric

+
1

2

[

T
(2)
µαβ(t; τ1, τ2) − T

(2)
µβα(t; τ2, τ1)

]

︸ ︷︷ ︸

antisymmetric

= S
(2)
µαβ(t; τ1, τ2)

︸ ︷︷ ︸

=S
(2)

µβα
(t;τ2,τ1)

+ A
(2)
µαβ(t; τ1, τ2)

︸ ︷︷ ︸

=−A
(2)

µβα
(t;τ2,τ1)

As this form of the response function is inserted into the original expression (9) for the second
order polarization density, we immediately find that it is left invariant under the interchange of the
dummy variables (α, τ1) and (β, τ2) (since the integration is performed from minus to plus infinity
in time). In particular, it from this follows that

P (2)
µ (r, t) = ε0

∫
∞

−∞

∫
∞

−∞

[S
(2)
µαβ(t; τ1, τ2) + A

(2)
µαβ(t; τ1, τ2)]Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

= ε0

∫
∞

−∞

∫
∞

−∞

S
(2)
µαβ(t; τ1, τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

︸ ︷︷ ︸

≡I1

+ ε0

∫
∞

−∞

∫
∞

−∞

A
(2)
µαβ(t; τ1, τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

︸ ︷︷ ︸

≡I2

= ε0

∫
∞

−∞

∫
∞

−∞

S
(2)
µβα(t; τ2, τ1)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

− ε0

∫
∞

−∞

∫
∞

−∞

A
(2)
µβα(t; τ2, τ1)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

= ε0

∫
∞

−∞

∫
∞

−∞

S
(2)
µβα(t; τ2, τ1)Eβ(r, τ2)Eα(r, τ1) dτ1 dτ2

︸ ︷︷ ︸

=I1

− ε0

∫
∞

−∞

∫
∞

−∞

A
(2)
µβα(t; τ2, τ1)Eβ(r, τ2)Eα(r, τ1) dτ1 dτ2

︸ ︷︷ ︸

=I2

i. e. the symmetric part satisfy the trivial identity I1 = I1, while the antisymmetric part satisfy
I2 = −I2, i. e. the antisymmetric part does not contribute to the polarization density, and that
we may set the antiymmetric part to zero, without imposing any constraint on the validity of the
theory.

The time response T
(2)
µαβ(t; τ1, τ2) is then unique and now chosen to be symmetric,

T
(2)
µαβ(t; τ1, τ2) = T

(2)
µβα(t; τ2, τ1).
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This procedure of symmetrization may seem like an all theoretical contruction, somewhat out of
focus of what lies ahead, but in fact it turns out to be an extremely useful property that we
later on will exploit extensively. The previously described symmetric property will later on, for
susceptibility tensors in the frequency domain, be denoted as the intrinsic permutation symmetry,
a general property that will hold irregardless of whether the nonlinear interaction under analysis
is highly resonant or far from resonance.

By again applying the arguments of time invariance, as previously for the linear response
function, we find that

T
(2)
µαβ(t + t0; τ1, τ2) = T

(2)
µαβ(t; τ1 − t0, τ2 − t0)

for all t, τ1, and τ2. Hence, by setting t = 0 and then replacing th arbitrary time t0 by t, again
as previously done for the linear case, one finds that T (2)(t; τ1, τ2) depends only on the two time
differences t− τ1 and t− τ2. To make this fact explicit, we may hence write the response function
as

T
(2)
µαβ(t; τ1, τ2) = R

(2)
µαβ(t − τ1, t − τ2),

giving the canonical form of the quadratic polarization density as

P (2)
µ (r, t) = ε0

∫
∞

−∞

∫
∞

−∞

R
(2)
µαβ(t − τ1, t − τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

= ε0

∫
∞

−∞

∫
∞

−∞

R
(2)
µαβ(τ ′

1, τ
′

2)Eα(r, t − τ ′

1)Eβ(r, t − τ ′

2) dτ ′

1 dτ ′

2.

(10)

The tensor R
(2)
µαβ(τ1, τ2) is called the quadratic electric polarization response of the medium, and in

similar with the linear response function, arguments of causality require the response function to
be zero whenever τ1 and/or τ2 is negative. Similarly, the reality condition on Eα(r, t) and Pα(r, t)

requires that R
(2)
µαβ(τ1, τ2) is a real-valued function.

Higher order polarization response functions

The nth order polarization density can in similar to the linear (n = 1 and quadratic (n = 2) ones
be written as

P (n)
µ (r, t) = ε0

∫
∞

−∞

· · ·

∫
∞

−∞

R
(n)
µα1···αn

(t − τ1, . . . , t − τn)Eα1
(r, τ1) · · ·Eαn

(r, τn) dτ1 · · · dτn

= ε0

∫
∞

−∞

· · ·

∫
∞

−∞

R
(n)
µα1···αn

(τ ′

1, . . . , τ
′

n)Eα1
(r, t − τ ′

1) · · ·Eαn
(r, t − τ ′

n) dτ ′

1 · · · dτ ′

n,

(11)

where the nth order response function is a tensor of rank n + 1, and a real-valued function of
the n parameters τ1, . . . , τn, vanishing whenever any τk < 0, k = 1, 2, . . . , n, and with the intrin-

sic permutation symmetry that it is left invariant under any of the n! pairwise permutations of
(α1, τ1), . . . , (αn, τn).
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