
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 12

In this final lecture, we will study the behaviour of the Bloch equations in different regimes of
resonance and relaxation. The Bloch equations are formulated as a vector model, and numerical
solutions to the equations are discussed.

For steady-state interaction, the polarization density of the medium, as obtained from the
Bloch equations, is expressed in a closed form. The closed solution is then expanded in a power
series, which when compared with the series obtained from the susceptibility formalism finally tie
together the Bloch theory with the susceptibilities.

The outline for this lecture is:
• Recapitulation of the Bloch equations
• The vector model of the Bloch equations
• Special cases and examples
• Steady-state regime
• The intensity dependent refractive index at steady-state
• Comparison with the susceptibility model

Recapitulation of the Bloch equations for two-level systems

Assuming two states |a〉 and |b〉 to be sufficiently similar in order for their respective lifetimes Ta ≈
Tb ≈ T1 to hold, where T1 is the longitudinal relaxation time, the Bloch equations for the two-level
are given as

du

dt
= −∆v − u/T2, (1a)

dv

dt
= ∆u + β(t)w − v/T2, (1b)

dw

dt
= −β(t)v − (w − w0)/T1, (1c)

where β ≡ erα
abE

α
ω(t)/~ is the Rabi frequency, being a quantity linear in the applied electric field

of the light, ∆ ≡ Ωba − ω is the detuning of the angular frequency of the light from the transition
frequency Ωba ≡ (Eb − Ea)/~, and where the variables (u, v, w) are related to the matrix elements
ρmn of the density operator as

u = ρΩ
ba + ρΩ

ab,

v = i(ρΩ
ba − ρΩ

ab),

w = ρbb − ρaa.

In these equations, ρΩ
ab is the temporal envelope of the off-diagonal elements, given by

ρab ≡ ρΩ
ab exp[i(Ωba − ∆)t].

In the Bloch equations (1), the variable w describes the population inversion of the two-level
system, while u and v are related to the dispersive and absorptive components of the polarization
density of the medium. In the Bloch equations, w0 ≡ ρ0(b) − ρ0(a) is the thermal equilibrium
inversion of the system with no optical field applied.
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The resulting electric polarization density of the medium

The so far developed theory of the density matrix under resonant interaction can now be applied
to the calculation of the electric polarization density of the medium, consisting of N identical
molecules per unit volume, as

Pµ(r, t) = N〈er̂µ〉

= N Tr[ρ̂er̂µ]

= N
∑

k=a,b

〈k|ρ̂er̂µ|k〉

= N
∑

k=a,b

∑

j=a,b

〈k|ρ̂|j〉〈j|er̂µ|k〉

= N
∑

k=a,b

{〈k|ρ̂|a〉〈a|er̂µ|k〉 + 〈k|ρ̂|b〉〈b|er̂µ|k〉}

= N {〈a|ρ̂|a〉〈a|er̂µ|a〉 + 〈b|ρ̂|a〉〈a|er̂µ|b〉 + 〈a|ρ̂|b〉〈b|er̂µ|a〉 + 〈b|ρ̂|b〉〈b|er̂µ|b〉}

= N(ρbaerµ
ab + ρaber

µ
ba)

= {Make use of ρab = (u + iv) exp(iωt) = ρ∗ba}

= N [(u − iv) exp(−iωt)erµ
ab + (u + iv) exp(iωt)erµ

ba].

The temporal envelope Pµ
ω of the polarization density is throughout this course as well as in Butcher

and Cotter’s book taken as
Pµ(r, t) = Re[Pµ

ω exp(−iωt)],

and by identifying this expression with the right-hand side of the result above, we hence finally
have obtained the polarization density in terms of the Bloch parameters (u, v, w) as

Pµ
ω (r, t) = Nerµ

ab(u − iv). (2)

This expression for the temporal envelope of the polarization density is exactly in the same mode
of description as the one as previously used in the susceptibility theory, as in the wave equations
developed in lecture eight. The only difference is that now we instead consider the polarization
density as given by a non-perturbative analysis. Taken together with the Maxwell’s equations (or
the propern wave equation for the envelopes of the fields), the Bloch equations are known as the
Maxwell–Bloch equations.

From Eq. (2), it should now be clear that the Bloch variable u essentially gives the in-phase
part of the polarization density (at least in this case, where we may consider the transition dipole
moments to be real-valued), corresponding to the dispersive components of the interaction between
light and matter, while the Bloch variable v on the other hand gives terms which are shifted ninety
degrees out of phase with the optical field, hence corresponding to absorptive terms.
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The vector model of the Bloch equations

In the form of Eqs. (1), the Bloch equations can be expressed in the form of an Euler equation as

dR

dt
= Ω × R − (u/T2, v/T2, (w − w0)/T1)

︸ ︷︷ ︸

relaxation term

, [B. & C. (6.54)]

where R = (u, v, w) is the so-called Bloch vector, that in the abstract (eu, ev, ew)-space describes
the state of the medium, and

Ω = (−β(t), 0, ∆)

is the vector that gives the precession of the Bloch vector (see Fig. 1).
This form, originally proposed in 1946 by Felix Bloch1 for the motion of a nuclear spin in

a magnetic field under influence of radio-frequency electromagnetic fields, and later on adopted
by Feynman, Vernon, and Hellwarth2 for solving problems in maser theory3, corresponds to the
motion of a damped gyroscope in the presence of a gravitational field. In this analogy, the vector
Ω can be considered as the torque vector of the spinning top of the gyroscope.

u

v

w

Ω

R(t)

R∞ = (0, 0, w0)
−β

∆

Figure 1. Evolution of the Bloch vector R(t) = (u(t), v(t), w(t)) around the “torque vector”
Ω = (−β(t), 0, ∆). In the absence of optical fields, the Bloch vector relax towards the thermal
equilibrium state R∞ = (0, 0, w0), where w0 = ρ(b) − ρ(a) is the molecular population inversion
at thermal equilibrium. At moderate temperatures, the thermal equilibrium population inversion
is very close to w0 = −1.

From the vector form of the Bloch equations, it is found that the Bloch vector rotates around
the torque vector Ω as the state of matter approaches steady state. For an adiabatically changing
applied optical field (i. e. a slowly varying envelope of the field), this precession follows the torque
vector.

The relaxation term in the vector Bloch equations also tells us that the relaxation along the
w-direction is given by the time constant T1, while the relaxation in the (u, v)-plane instead is
given by the time constant T2. By considering the w-axis as the “longitudinal” direction and the
(u, v)-plane as the “transverse” plane, the terminology for T1 as being the “longitudinal relaxation
time” and T2 as being the “transverse relaxation time” should hence be clear.

1 F. Bloch, Nuclear induction, Phys. Rev. 70, 460 (1946). Felix Bloch was in 1952 awarded the
Nobel prize in physics, together with Edward Mills Purcell, “for their development of new methods
for nuclear magnetic precision measurements and discoveries in connection therewith”.

2 R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, Geometrical representation of the Schröd-

inger equation for solving maser problems, J. Appl. Phys. 28, 49 (1957).
3 Microwave Amplification by Stimulated Emission of Radiation, a device for amplification of

microwaves, essentially working on the same principle as the laser.
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Transient build-up at exact resonance as the optical field is switched on

The case T1 ≫ T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 2a. Evolution of the Bloch vector (u(t), v(t), w(t)) as the optical field is switched on,
for the exactly resonant case (δ = 0), and with the longitudinal relaxation time being much
greater than the transverse relaxation time (T1 ≫ T2). The parameters used in the simulation are
η ≡ T1/T2 = 100, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 3, t > 0. The medium was initially
at thermal equilibrium, (u(0), v(0), w(0)) = (0, 0, w0) = −(0, 0, 1).
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Figure 2b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 2a.
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The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 3a. Evolution of the Bloch vector (u(t), v(t), w(t)) as the optical field is switched on, for
the exactly resonant case (δ = 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 3, t > 0. The medium was initially
at thermal equilibrium, (u(0), v(0), w(0)) = (0, 0, w0) = −(0, 0, 1).
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Figure 3b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 3a.
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Transient build-up at off-resonance as the optical field is switched on

The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 4a. Evolution of the Bloch vector (u(t), v(t), w(t)) as the optical field is switched on,
for the off-resonant case (δ 6= 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 4, w0 = −1, and γ(t) ≡ β(t)T2 = 3, t > 0. The medium was initially
at thermal equilibrium, (u(0), v(0), w(0)) = (0, 0, w0) = −(0, 0, 1).
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Figure 4b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 4a.
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Transient decay for a process tuned to exact resonance

The case T1 ≫ T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 5. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the case of tuning to exact resonance (δ = 0), and with the longitudinal relaxation time being much
greater than the transverse relaxation time (T1 ≫ T2). The parameters used in the simulation are
η ≡ T1/T2 = 100, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 0.

The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 6. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the case of tuning to exact resonance (δ = 0), and with the longitudinal relaxation time being
approximately equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the
simulation are η ≡ T1/T2 = 2, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 0.
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Transient decay for a slightly off-resonant process

The case T1 ≫ T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 7a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the off-resonant case (δ 6= 0), and with the longitudinal relaxation time being much greater than the
transverse relaxation time (T1 ≫ T2). The parameters used in the simulation are η ≡ T1/T2 = 100,
δ ≡ ∆T2 = 2, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 5 for the exactly resonant
case.)
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Figure 7b. Same as Fig. 7a, but with δ = −2 as negative.
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The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 8a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off,
for the off-resonant case (δ 6= 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 2, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 6 for the
exactly resonant case.)
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Figure 8b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 8a.
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Transient decay for a far off-resonant process

The case T1 ≫ T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 9a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the far off-resonant case (δ 6= 0), and with the longitudinal relaxation time being much greater
than the transverse relaxation time (T1 ≫ T2). The parameters used in the simulation are η ≡
T1/T2 = 100, δ ≡ ∆T2 = 20, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 5 for the
exactly resonant case, and with Fig. 7a for the slightly off-resonant case.)
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Figure 9b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 9a.
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The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 10a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the far off-resonant case (δ 6= 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 20, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 6 for the
exactly resonant case, and with Fig. 8a for the slightly off-resonant case.)
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Figure 10b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 10a.
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The case T1 ≪ T2 – Longitudinal relaxation faster than transverse relaxation
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Figure 11a. Same parameter values as in Fig. 6, but with the longitudinal relaxation time being
much smaller than the transverse relaxation time (T1 ≪ T2), η ≡ T1/T2 = 0.1. (Compare with
Figs. 9a and 10a for the cases T1 ≫ T2 and T1 ≈ T2, respectively.)
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Figure 11b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 11a.
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The connection between the Bloch equations and the susceptibility

As an example of the connection between the polarization density obtained from the Bloch equa-
tions and the one obtained from the susceptibility formalism, we will now – once again – consider
the intensity-dependent refractive of the medium.

The intensity-dependent refractive index in the susceptibility formalism

Previously in this course, the intensity-dependent refractive index has been obtained from the
optical Kerr-effect in isotropic media, in the form

n = n0 + n2|Eω|
2,

where n0 = [1 + χ
(1)
xx (−ω; ω)]1/2 is the linear refractive index, and

n2 =
3

8n0
χ(3)

xxxx(−ω; ω, ω,−ω)

is the parameter of the intensity dependent contribution. However, since we by now are fully aware
that the polarization density in the description of the susceptibility formalism originally is given
as an infinity series expansion, we may expect that the general form of the intensity dependent
refractive index rather would be as a power series in the intensity,

n = n0 + n2|Eω|
2 + n4|Eω|

4 + n6|Eω|
6 + . . .

For linearly polarized light, say along the x-axis of a Cartesian coordinate system, we know that
such a series is readily possible to derive in terms of the susceptibility formalism, with the different
order terms of the refractive index expansion given by the elements

n2 ∼ χ(3)
xxxx(−ω; ω, ω,−ω),

n4 ∼ χ(5)
xxxxxx(−ω; ω, ω,−ω, ω,−ω),

n6 ∼ χ(7)
xxxxxxxx(−ω; ω, ω,−ω, ω,−ω, ω,−ω),

...

Such an analysis would, however, be extremely cumbersome when it comes to the analysis of
higher-order effects, and the obtained sum of various order terms would also be almost impossible
to obtain a closed expression for. For future reference, to be used in the interpretation of the
polarization density given by the Bloch equations, the intensity dependent polarization density is
though shown in its explicit form below, including up to the seventh order interaction term in the
Butcher and Cotter convention,

P x
ω = ε0χ

(1)
xx (−ω; ω)Ex

ω (order n = 1)

+ ε0(3/4)χ(3)
xxxx(−ω; ω, ω,−ω)|Ex

ω|
2Ex

ω (order n = 3)

+ ε0(5/8)χ(5)
xxxxxx(−ω; ω, ω,−ω, ω,−ω)|Ex

ω|
4Ex

ω (order n = 5)

+ ε0(35/64)χ(7)
xxxxxxxx(−ω; ω, ω,−ω, ω,−ω, ω,−ω)|Ex

ω|
6Ex

ω (order n = 7)

+ . . .

The other approach to calculation of the polarization density, as we next will outline, is to use the
steady-state solutions to the Bloch equations.
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The intensity-dependent refractive index in the Bloch-vector formalism

For steady-state interaction between light and matter, the solutions to the Bloch equations yield

u − iv =
−βw

∆ − i/T2
, [B. & C. (6.53a)],

w =
w0[1 + (∆T2)

2]

1 + (∆T2)2 + β2T1T2
, [B. & C. (6.53b)],

where, as previously, β = erα
abE

α
ω(t)/~ is the Rabi frequency, though now considered to be a

slowly varying (adiabatically following) quantity, due to the assumption of steady-state behaviour.
From the steady-state solutions, the µ-component (µ = x, y, z) of the electric polarization density
P(r, t) = Re[Pω exp(−iωt)] of the medium hence is given as

Pµ
ω = Nerµ

ab(u − iv)

= −Nerµ
ab

βw

∆ − i/T2

= −Nerµ
ab

β

(∆ − i/T2)

w0[1 + (∆T2)
2]

[1 + (∆T2)2 + β2T1T2]

= −New0
rµ
ab

(∆ − i/T2)

β
[

1 + T1T2

(1+(∆T2)2)
β2

] .

(3)

In this expression for the polarization density, it might at a first glance seem as it is negative for
a positive Rabi frequency β, henc giving a polarization density that is directed anti-parallel to
the electric field. However, the quantity w0 = ρ0(b) − ρ0(a), the population inversion at thermal
equilibrium, is always negative (since we for sure do not have any population inversion at thermal
equilibrium, for which we rather expect the molecules to occupy the lower state), hence ensuring
that the off-resonant, real-valued polarization density always is directed along the direction of the
electric field of the light.

Next observation is that the polarization density no longer is expressed as a power series in
terms of the electric field, but rather as a rational function,

Pµ
ω ∼ X/(1 + X2), (4)

where
X =

√

T1T2/(1 + (∆T2)2)β

=
√

T1T2/(1 + (∆T2)2)er
α
abE

α
ω (t)/~

is a parameter linear in the electric field. The principal shape of the rational function in Eq. (4) is
shown in Fig. 12.

From Eq. (4), the polarization density is found to increase with increasing X up to X = 1, as
we expect for an increasing power of an optical beam. However, for X > 1, we find the somewhat
surprising fact that the polarization density instead decrease with an increasing intensity; this
peculiar suggested behaviour should hence be explained before continuing.

The first observation we may do is that the linear polarizability (i. e. what we usually associate
with linear optics) follows the first order approximation p(X) = X. In the region where the
peculiar decrease of the polarization density appear, the difference between the suggested nonlinear
polarization density and the one given by the linear approximation is huge, and since we a priori

expect nonlinear contributions to be small compared to the alsways present linear ones, this is
already an indication of that we in all practical situations do not have to consider the descrease of
polarization density as shown in Fig. 12.

For optical fields of the strength that would give rise to nonlinearities exceeding the linear
terms, the underlying physics will rather belong to the field of plasma and high-energy physics,
rather than a bound-charge description of gases and solids. This implies that the validity of the
models here applied (bound charges, Hamiltonians being linear in the optical field, etc.) are limited
to a range well within X ≤ 1.
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Figure 12. The principal shape of the electric polarization density of the medium, as function of
the applied electric field of the light. In this figure, X =

√

T1T2/(1 + (∆T2)2)β is a normalized
parameter describing the field strength of the electric field of the light.

Another interesting point we may observe is a more mathematically related one. In Fig. 12, we
see that even for very high order terms (such as the approximating power series of degree 31, as
shown in the figure), all power series expansions fail before reaching X = 1. The reason for this is
that the power series that approximate the rational function X/(1 + X2),

X/(1 + X2) = X − X3 + X5 − X7 + . . . ,

is convergent only for |X| < 1; for all other values, the series is divergent. This means that no
matter how many terms we include in the power series in X, it will nevertheless fail when it comes
to the evaluation for |X| > 1. Since this power series expansion is equivalent to the expansion
of the nonlinear polarization density in terms of the electrical field of the light (keeping in mind
that X here actually is linear in the electric field and hence strictly can be considered as the field
variable), this also is an indication that at this point the whole susceptibility formalism fail to give
a proper description at this working point.

This is an excellent illustration of the downturn of the susceptibility description of interaction
between light and matter; no matter how many terms we may include in the power series of the
electrcal field, it will at some point nevertheless fail to give the total picture of the interaction, and
we must then instead seek other tools.

Returning to the polarization density given by Eq. (3), we may now express this in an explicit
form by inserting ∆ ≡ Ωba − ω for the angular frequency detuning, the Rabi frequency β =
erα

abE
α
ω (t)/~, and the thermal equilibrium inversion w0 = ρ0(b)−ρ0(a). This gives the polarization

density of the medium as

Pµ
ω = ε0

Ne2

ε0~
(ρ0(a) − ρ0(b))

rµ
abr

α
ab

(Ωba − ω − i/T2)
︸ ︷︷ ︸

=χ
(1)
µα(−ω;ω) for a two level medium

1
[

1 + T1T2

(1+(Ωba−ω)2T 2
2 )

(erγ
abE

γ
ω/~)2

]

︸ ︷︷ ︸

nonlinear correction factor to χ
(1)
µα(−ω;ω)

︸ ︷︷ ︸

the field corrected susceptibility, χ̄(ω;Eω) [see Butcher and Cotter, section 6.3.1]

Eα
ω .
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In this form, the polarization density is given as the product with a term which is identical to the
linear susceptibility4 (as obtained in the perturbation analysis in the frame of the susceptibility
formalism), and a correction factor which is a nonlinear function of the electric field.

The nonlinear correction factor, of the form 1/(1 + X2), with X =
√

T1T2/(1 + (∆T2)2)β as
previously, can now be expanded in a power series around the small-signal limit X = 0, using

1/(1 + X2) = 1 − X2 + X4 − X6 + . . . ,

from which we obtain the polarization density as a power series in the electric field (which for the
sake of simplicitly now is taken as linearly polarized along the x-axis) as

P x
ω ≈ ε0

Ne2

ε0~
(ρ0(a) − ρ0(b))

rx
abr

x
ab

(Ωba − ω − i/T2)
Ex

ω

− ε0
Ne4

ε0~3
(ρ0(a) − ρ0(b))

rx
abr

x
ab

(Ωba − ω − i/T2)

(rx
ab)

2

[1/T 2
2 + (Ωba − ω)2](T2/T1)

|Ex
ω|

2Ex
ω

+ ε0
Ne6

ε0~5
(ρ0(a) − ρ0(b))

rx
abr

x
ab

(Ωba − ω − i/T2)

(rx
ab)

4

[1/T 2
2 + (Ωba − ω)2]2(T2/T1)2

|Ex
ω|

4Ex
ω

+ . . .

(5)

This form is identical to one as obtained in the susceptibility formalism; however, the steps that
led us to this expression for the polarization density do not rely on the perturbation theory of

the density operator, but rather on the explicit form of the steady-state solutions to the Bloch
equations.

Summary of the Bloch and susceptibility polarization densities

To summarize this last lecture on the Bloch equations, expressing the involved parameters in the
same style as previously used in the description of the susceptibility formalism, the polarization
density obtained from the steady-state solutions to the Bloch equations is

Pµ
ω = ε0

Ne2

ε0~
(ρ0(a) − ρ0(b))

rµ
abr

α
ab

(Ωba − ω − i/T2)

1
[

1 + T1T2

(1+(Ωba−ω)2T 2
2 )

(erα
abE

α
ω/~)2

]Eα
ω .

By expanding this in a power series in the electrical field, one obtains the form (5), in which we
from the same description of the polarization density in the susceptibility formalism can identify

χ(1)
xx (−ω; ω) =

Ne2

ε0~
(ρ0(a) − ρ0(b))

rx
abr

x
ab

(Ωba − ω − i/T2)
,

χ(3)
xxxx(−ω; ω, ω,−ω) = −

4Ne4

3ε0~3
(ρ0(a) − ρ0(b))

rx
abr

x
ab

(Ωba − ω − i/T2)

(rx
ab)

2

[1/T 2
2 + (Ωba − ω)2](T2/T1)

,

χ(5)
xxxxxx(−ω; ω, ω,−ω,ω,−ω)

=
8Ne6

5ε0~5
(ρ0(a) − ρ0(b))

rx
abr

x
ab

(Ωba − ω − i/T2)

(rx
ab)

4

[1/T 2
2 + (Ωba − ω)2]2(T2/T1)2

,

as being the first contributions to the two-level polarization density, including up to fifth order
interactions. For a summary of the non-resonant forms of the susceptibilities of two-level systems,
se Butcher and Cotter, Eqs. (6.71)–(6.73).

4 In the explicit expressions for the linear susceptibility, for example Butcher and Cotter’s
Eqs. (4.58) and (4.111) for the non-resonant and resonant cases, respectively, there are two terms,
one with Ωba −ω in the denominator and the other one with Ωba + ω. The reason why the second
form does not appear in the expression for the field corrected susceptibility, as derived from the
Bloch equations, is that we have used the rotating wave approximation in the derivation of the

final expression. (Recapitulate that in the rotating wave approximation, terms with oscillatory de-
pendence of exp[i(Ωba + ω)t] were neglected.) As a result, all temporally phase-mismatched terms
are neglected, and in particular only terms with Ωba − ω in the denominator will remain. This,
however, is a most acceptable approximation, especially when it comes to resonant interactions,
where terms with Ωba − ω in the denominator by far will dominate over non-resonant terms.
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Appendix: Notes on the numerical solution to the Bloch equations

In their original form, the Bloch equations for a two-level system are given by Eqs. (1) as

du

dt
= −∆v − u/T2,

dv

dt
= ∆u + β(t)w − v/T2,

dw

dt
= −β(t)v − (w − w0)/T1.

By taking the time in units of the transverse relaxation time T2, as

τ = t/T2,

the Bloch equations in this normalized time scale become

du

dτ
= −∆T2v − u,

dv

dτ
= ∆T2u + β(t)T2w − v,

dw

dτ
= −β(t)T2v − (w − w0)T2/T1.

In this system of equations, all coefficients are now normalized and physically dimensionless, ex-
pressed as relevant quotes between relaxation times and products of the Rabi frequency or detuning
frequency with the transverse relaxation time. Hence, by taking the normalized parameters

δ = ∆T2,

γ(t) = β(t)T2,

η = T1/T2,

where δ can be considered as the normalized detuning from molecular resonance of the medium,
γ(t) as the normalized Rabi frequency, and η as a parameter which describes the relative impact
of the longitudinal vs transverse relaxation times, the Bloch equations take the normalized final
form

du

dτ
= −δv − u,

dv

dτ
= δu + γ(t)w − v,

dw

dτ
= −γ(t)v − (w − w0)/η.

This normalized form of the Bloch equations has been used throughout the generation of graphs
in Figs. 2–11 of this lecture, describing the qualitative impact of different regimes of resonance and
relaxation. The normalized Bloch equations were in the simulations shown in Figs. 2–11 integrated
by using the standard routine ODE45() in MATLAB.
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