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Polarization State Controlled Multistability of a Nonlinear Magneto-optic Cavity
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We investigate the theory of a nonlinear magneto-optic Fabry-Pérot interferometer, filled with
an isotropic dielectric that possesses linear and nonlinear artificial gyrotropy. We show that the
nonreciprocity leads to specific multistable transmission patterns and, in particular, to a polarizatio
controlled multistability at constant input intensity. We also show that the reciprocity of the cavity can
be restored effectively for certain parameter regimes. [S0031-9007(99)08486-0]

PACS numbers: 42.65.Pc, 42.79.Ta, 85.70.Sq
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The polarization state of the light reflects the vec
tor nature of the electromagnetic field and introduce
topological features with important implications regardin
discrimination and robustness of certain electromagne
interactions. This is particularly striking when nonre
ciprocity comes into play, and can have some far reachi
conceptual repercussions in applications. This is, for i
stance, the case when unidirectional control or shieldi
of optical signal transfer is an issue, or in connection wi
storage and transfer of coherence, quantum optical or s
coherence in particular. In this respect magneto-optic
interactions provide the most appropriate ground to stu
such aspects because of their gyrotropic character.

We address here such a case in confined geome
namely, a magneto-optic Fabry-Pérot (FP) cavity, and
particular we show that this can exhibit a polarizatio
state controlled multistable operation. The starting point
that the constitutive relation between the electric displac
ment vectorDsr, td ­ RefDve2ivtg and the electric field
Esr, td ­ RefEve2ivtg can be written [1] in the form,

Dv ­ ´0s´: Ev 1 iEv 3 gd , (1)

where ´ is the tensor of the electrical permittivity, and
g the gyration vector, parallel to an externally applie
magnetic field. Clearly the vector product in Eq. (1) lifts
the degeneracy of left- and right-circular polarization stat
and introduces a nonreciprocal artificial gyrotropy. Th
aspect is strikingly manifested in normal reflection, and w
anticipate this to have a distinct impact on the transmissi
characteristics of a magneto-optic FP cavity, because
the cumulative effect of multiple reflections and optica
nonlinearities related to photoinduced modifications of´
andg, namely, the optical Kerr effect and the photoinduce
Faraday rotation [2], respectively. A constitutive relatio
of the form (1) leading to gyrotropy also holds [1] in
a medium with natural optical activity (rotatory power
without placing it in a static magnetic field, but the
reciprocity is preserved and the effects we discuss belo
cannot take place there.
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The magneto-optic FP cavity consists of a dielectr
placed between two partially reflecting plane surface
separated by a distanceL, in the Faraday configuration
with the optical fields propagating collinearly along th
direction of the externally applied static magnetic fie
H0 ­ H0ez. Keeping only lowest order optical and
magneto-optical nonlinearities, in the infinite plane-wav
limit, the field inside the cavity then obeys [3] the wav
equation,

≠2Ev

≠z2 1
v2

c2 Ev ­ 2v2m0

4X
j­1

Ps jd
v , (2)

with Ps1d
v ­ ´0x seed: Ev andPs3d

v ­ ´0x seeeed: EvEvEp
v

being the linear and cubic (optical Kerr effect) [3] po
larization densities, respectively;Ps2d

v ­ ´0x seemd: EvH0

and Ps4d
v ­ ´0x seeeemd: EvEvEp

vH0 are their modifica-
tions brought by the magnetic field, the linear and phot
induced Faraday effects, respectively [1,2]. We ha
introduced the nonlinear susceptibility formalism [3] an
neglected the magneto-optical self-coupling to the we
and rapidly oscillating magnetic field of the light.

We introduce the circularly polarized basise6 ­ sex 6

ieydy
p

2, and by separating Eq. (2) into circularly polar
ized componentsE6 ­ ep

6 ? Ev we obtain the system of
nonlinear coupled differential equations,

≠2E6

≠z2 1
v2

c2 sn2 6 g 1 r16
jE6j2 1 r26

jE7j2dE6 ­ 0 ,

(3)

with n2 ­ 1 1 x seed
xx , g ­ ix seemd

xyz H0, and whererk6
­

pk 6 qk, k ­ 1, 2, p1,2 ­ s3y4d sx seeeed
xxxx 7 x seeeed

xyyx d,
q1,2 ­ is3y4d sx seeeemd

xyyyz 7 x seeeemd
xxxyz dH0, where we made

use of intrinsic permutation symmetry [3] of the involve
susceptibility tensors.

ResolvingE6 into their forward and backward travel
ing components,Ev ­ E

f
v 1 Eb

v , E
f
v ­ e1E

f
1eik0nz 1

e2Ef
2eik0nz , Eb

v ­ ep
1Eb

1e2ik0nz 1 ep
2Eb

2e2ik0nz, with
k0 ­ vyc, we can derive equations for the envelop
© 1999 The American Physical Society
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6, where a “1” in the subscript de-
notes left-circular polarization (LCP) and a “2” denotes
right-circular polarization (RCP). We will from now on
assume a lossless medium with real coefficientsn, g,
andrk6

, k ­ 1, 2. Applying the slowly varying envelope
approximation [3], multiplying Eq. (3) bye6ik0nz , and
averaging over a few spatial periods then gives a syst
of four nonlinear coupled differential equations,

≠E
f
6

≠z
­ i

k0

2n
f6g 1 r16

sjEf
6j2 1 2jEb

7j2d

1 r26
sjEf

7j2 1 jEb
6j2dgEf

6 , (4a)

≠Eb
6

≠z
­ 2i

k0

2n
f7g 1 r17

sjEb
6j2 1 2jE

f
7j2d

1 r27
sjEb

7j2 1 jE
f
6j2dgEb

6 , (4b)

where we neglected phase-mismatched terms. Eq
tions (4) are easily integrated to give the general soluti
for the envelopes as

E
f
6 ­ A

f
6eik0h

f
6z1ic

f
6 , Eb

6 ­ Ab
6e2ik0h

b
6z1ic

b
6 , (5)

with A
f,b
6 being positive constants of integration,c

f,b
6 the

phases of a respective wave at the first reflecting surfa
of the cavity, atz ­ 0, and where

h
f
6 ­ f6g 1 r16

sAf
6

2 1 2Ab
7

2d

1 r26
sAf

7
2 1 Ab

6
2dgys2nd ,

hb
6 ­ f7g 1 r17

sAb
6

2 1 2A
f
7

2d

1 r27
sAb

7
2 1 A

f
6

2dgys2nd .

The boundary conditions of the cavity are

A
f
6eic

f
6 ­ t

s0d
6 EI

6 1 r
s0d
7 Ab

7eic
b
7 , (6a)

Ab
6e2isn1h

b
6dk0L1ic

b
6 ­ r

s1d
7 A

f
7eisn1h

f
7dk0L1ic

f
7 , (6b)

where EI
6 are the incident complex fields taken imme

diately before the first reflecting surface. In Eqs. (6
t

s0d
6 ­ 2n0ysn0 1 n6d, r

s0d
6 ­ sn7 2 n0dysn7 1 n0d,

andr
s1d
6 ­ sn6 2 n1dysn6 1 n1d are the complex ampli-

tude transmission and reflection coefficients for LCP a
RCP, with n0 being the refractive index of the medium
surrounding the cavity forz , 0, n1 the refractive index
for L , z, andn2

6 ­ n2 6 g.
Using the fact that the electrical fields transmitte

from the cavity are ET
6 ­ t

s1d
6 ep

6 ? E
f
vsz ­ Ld, with

t
s1d
6 ­ 2n6ysn6 1 n1d, and introducing the new normal-

ized and dimensionless variabless
I ,T
6 ­ sk0Lp1ynd 3

jE
I ,T
6 j2, Eqs. (5) and (6) can be reduced to

f1 1 F6 sin2sG6 1 C
s1d
6 sT

6 1 C
s2d
7 sT

7dgsT
6 ­ U6sI

6 ,
(7)

where the constantsC
skd
6 , F6, andU6 are defined as
em

ua-
on

ce

-
),

nd

d

C
s1d
6 ­

3s1 1 jr
s1d
6 j2d

4jt
s1d
6 j2

f1 7 ds1 2 nmdys1 2 nedg ,

C
s2d
6 ­

s1 1 jr
s1d
6 j2d

2jt
s1d
6 j2

mf1 6 ds1 1 nmdys1 1 nedg ,

F6 ­
4jr

s0d
7 r

s1d
6 j

s1 2 jr
s0d
7 r

s1d
6 jd2

, U6 ­
jt

s0d
6 t

s1d
6 j2

s1 2 jr
s0d
7 r

s1d
6 jd2

,

G6 ­ fs2n 6 gyndk0L 1 arg r
s0d
7 1 arg r

s1d
6 gy2 ,

and where we defined the parameters

ne ­ x seeeed
xyyx yx seeeed

xxxx , d ­ 2iH0x seeeemd
xyyyz yx seeeed

xxxx ,

nm ­ x seeeemd
xxxyz yx seeeemd

xyyyz , m ­ s1 1 nedys1 2 ned .

In Eq. (7), F6 have the role of the finesses of th
cavity for pure LCP or RCP waves, andG6 are half
the total phase shifts experienced by pure LCP or RC
waves during one complete round-trip inside the cavit
excluding nonlinear effects.

When the incident light is either LCP or RCP, one ca
obtain exact solutions to Eq. (3). In particular, whenev
the reflection coefficients are real, the exact solutio
becomes

f1 1 F6 sn2sn6k0L, m6dgsT
6 ­ U6sI

6 ,

where sn is a Jacobian elliptic function [4], with th
parametersn6 andm6 given as

n2
6 ­ n2

6 1

"
1 1

2jr
s1d
6 j

3s1 1 jr
s1d
6 j2d

#
2n
k0L

C
s1d
6 sT

6 ,

m6 ­
8jr

s1d
6 j

3s1 1 jr
s1d
6 j2d

n

n
2
6k0L

C
s1d
6 sT

6 .

The total solution for the transmitted light is conve
niently expressed in terms of normalized and dime
sionless Stokes parameters [5],sk ­ sk0Lp1yndSk, k ­
0, 1, 2, 3, with

S0 ­ jET
1j2 1 jET

2j2, S1 ­ 2 RefETp
1 ET

2g ,

S3 ­ jET
1j2 2 jET

2j2, S2 ­ 2 ImfETp
1 ET

2g ,

and the incident light by the setwk ­ sk0Lp1yndWk ,
k ­ 0, 1, 2, 3, with Wk defined similarly toSk, with T
replaced byI. Using this transformation, Eq. (7) become

s1 1 F6 sin2j6d ss0 6 s3d ­ U6sw0 6 w3d , (8)

with j6 ­ j6ss0, s3d given as

j6 ­ G 6 DG 1 sCs1d
6 1 C

s2d
7 ds0y2

6 sCs1d
6 2 C

s2d
7 ds3y2 ,

where we defined the detuning angleG ­ sG1 1 G2dy2
smod pd and differential detuning angleDG ­ sG1 2

G2dy2 smod pd. The effective impact of nonreciprocity
is manifested whenever Eq. (8) is noninvariant under t
1427



VOLUME 82, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 15 FEBRUARY 1999

y
y,
s

of
-

,

he
-

.
e

t

ues
transformationEI
6 ! EIp

7 , ET
6 ! ETp

7 , i.e., sw3, s3d !
2sw3, s3d. The remaining Stokes parameters,s1 and s2,
are obtained from Eqs. (5) and (6) as

s1 ­ ss2
0 2 s2

3d1y2 cosswd ,

s2 ­ ss2
0 2 s2

3d1y2 sinswd ,
(9)

with w ­ wss0, s3d being twice the angle between thex
axis and the main axis of the polarization ellipse of th
transmitted light,

w ­ w0 1 w1 1 w2 1 w3 ,

w0 ­ arg EI
2 2 arg EI

1 ,

w1 ­ arg ts0d
2 1 arg ts1d

2 2 arg t
s0d
1 2 arg t

s1d
1 ,

w2 ­ 2k0gLyn 2 sD1 1 D2ds0 2 sD1 2 D2ds3 ,

w3 ­ arctan

√
jr

s0d
1 rs1d

2 j sin 2j2

1 2 jr
s0d
1 r

s1d
2 j cos2j2

!

2 arctan

√
jrs0d

2 r
s1d
1 j sin 2j1

1 2 jr
s0d
2 r

s1d
1 j cos2j1

!
,

D6 ­
s1 1 2jr

s1d
6 j2d

3s1 1 jr
s1d
6 j2d

C
s1d
6 2

1
2

C
s2d
6 .

The contributionw3 follows directly from the nonre-
ciprocity of the artificially induced gyrotropy, as oppo
site to the reciprocal natural gyrotropy (optical activity)
where the rotation of the polarization ellipse of the for
ward traveling field is compensated for on the way bac
[1,6]. Relations (8) and (9) completely describe the po
larization pattern of the transmitted beam for an arbitra
polarization of the incident beam. From this complex pa
tern we single out the case of polarization state controll
multistable transmission.

The following discussion is significantly simplified
under the approximation of equal reflectivities for LCP
and RCP of both surfaces,r

skd
6 ø r, k ­ 0, 1.

FIG. 1. Normalized transmitted intensitys0 vs normalized
input intensityw0. Used parameter values areR ­ 0.8, G ­
0.4p, ne ­ 0.2, andd ­ 0.
1428
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First we analyze the influence of the linear gyrotrop
in the case with negligible nonlinear gyrotropy, namel
d ­ 0. We note that, for differential detuning angle
DG ­ 0, py2, the effective impact of the nonreciprocity
on the transmitted light disappears, and forne ­ 0.2 the
transmitted intensity (ellipticity) becomes independent
the input ellipticity (intensity). In Fig. 1 we show the nor
malized transmitted intensitys0, obtained from Eq. (8), vs
normalized input intensityw0 for these two extreme cases
for R ­ jrj2 ­ 0.8, G ­ 0.4p, and an arbitrary polar-
ization state; a multistable behavior is obtained as in t
ordinary scalar FP cavity [7,8]. As the differential detun
ing angle is varied, for example, starting withDG ­ 0
and increasing the externally applied magnetic fieldH0,
for DG ­ 0.2p we obtain the solution shown in Fig. 2
Figure 2(a) clearly shows the asymmetrical impact of th

FIG. 2. (a) Normalized transmitted intensitys0 vs normalized
input intensity w0 and normalized input ellipticityw3yw0.
(b) Normalized transmitted intensity vs normalized inpu
ellipticity, taken for (A) v0 ­ 2.0, (B) v0 ­ 3.2, (C) v0 ­ 5.6,
(D) v0 ­ 8.0, and (E) v0 ­ 10.6. One optical hysteresis loop
is indicated by the dashed arrows. Used parameter val
are R ­ 0.8, G ­ 0.4p, DG ­ 0.2p, ne ­ 0.2, and d ­ 0.
Notice the asymmetrical impact of nonreciprocity.
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FIG. 3. (a) Normalized transmitted intensitys0 vs normalized
input intensityw0 and input ellipticityw3yw0. (b) Normalized
transmitted intensity vs input ellipticity, taken for (A) v0 ­ 3.2,
(B) v0 ­ 5.6, (C) v0 ­ 8.0, (D) v0 ­ 10.6, and (E) v0 ­
13.4. One optical hysteresis loop is indicated by the dash
arrows. Used parameter values areR ­ 0.8, G ­ 0.4p, DG ­
0, ne ­ nm ­ 0.2, andd ­ 0.4.

nonreciprocity on the transmitted light. The striking re
sult is the appearance of hysteresis loops at constant in
intensity, as shown in Fig. 2(b). Further increase of th
magnetic field causes the FP interferometer atDG ­ py2
to return to a state where the nonreciprocity is effective
cancelled, with the transmitted intensity (ellipticity) be
coming independent of the input ellipticity (intensity), a
shown in Fig. 1.

We now analyze the influence of nonlinear magnet
optical interaction, and in order to contrast it with th
previous case we chooseDG ­ 0, and all other parameter
values same as before; in addition, we choosenm ­ 0.2.
As the nonlinear magneto-optical interaction increas
from d ­ 0 the nonreciprocity sets in, and the transmitte
intensity (ellipticity) again is no longer independent on th
input ellipticity (intensity); the interdependence become
more complex with increasingd. In Fig. 3 we show
ed
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a case ford ­ 0.4. As shown in Fig. 3(b) hysteresis
loops appear for constant input intensity as in the previo
case withd ­ 0 and DG fi 0, py2. In fact, a careful
analysis shows a whole series of regions where
behavior becomes effectively reciprocal because of ex
cancellation of linear and photoinduced terms of Eqs.
and (9).

Several systems can be considered for experimenta
vestigations. In the transparency region we conside
here the nonlinear coefficients are weak, but close
resonances they can be appreciable and the predicted
havior comfortably observable. Some provisions mu
be made in the previous theory to include absorpti
losses. One interesting case is that of semimagnetic se
conductors where giant linear and photoinduced Fara
rotations have been evidenced [9] both in bulk and
multiple quantum wells with moderate magnetic field an
beam intensity. Another case [10] is that of an atomic g
for instance, sodium or cesium, where again close to
atomic resonance giant Faraday rotations have been m
sured [11,12] and similarly for rare earth doped crystals
glasses.

In conclusion, we have derived the transmission char
teristics of a nonlinear magneto-optic cavity. The solutio
show a rich behavior as a consequence of the interplay
tween nonlinearity and gyrotropy, and one of the impa
of the artificially introduced gyrotropy is the appearan
of a polarization state controlled multistability at consta
input light intensity.
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