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Magneto-optic parametric oscillation
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We develop a model of large-signal steady-state magneto-optic parametric oscillation in the Faraday configura-
tion of a singly resonant cavity. The conversion efficiency and the threshold and phase-matching conditions
are discussed, and we show that tunable phase matching can be achieved by use of a static magnetic field,
eliminating any walk-off effects. © 2000 Optical Society of America

OCIS codes: 190.4970, 190.4360, 230.3810.
Optical parametric processes such as amplification and
oscillation, which rely on the splitting of a photon of
energy h̄v3 into two photons of lesser energies, h̄v1
and h̄v2, such that v3 � v1 1 v2, in bulk media de-
pend critically on the phase-matching condition k3 �
k1 1 k2. This condition can be satisfied1 by exploita-
tion of the linear birefringence of anisotropic noncen-
trosymmetric media such as ferroelectric compounds,
with concomitant complications: spatial walk-off and
restrictions on polarization states and also in tunabil-
ity range and the tunability scheme that is used.

Some of these problems can be circumvented by use
of circularly birefringent crystals lacking inversion
symmetry, where the relation between the electric in-
duction and electric field is Dv � e0�e :Ev 1 iEv 3 g�,
with e being the dielectric constant, a scalar in the
case of an isotropic medium, and g is the gyration
vector. The case of magneto-optic parametric ampli-
fication was recently analyzed2; here we extend this
analysis to the case of a magneto-optic parametric
oscillator (MOPO).

Schematically this device consists of a noncen-
trosymmetric magneto-optic dielectric placed between
two partially ref lecting plane surfaces, separated
by a distance L, in the Faraday configuration, with
the optical fields propagating collinearly along the
direction of the externally applied static magnetic f ield
H0 � H0ez. To make the points clear we have chosen
to analyze a setup with the optical waves propa-
gating in the [111] direction (laboratory z axis) of a
crystal of point-symmetry class 43m, which includes
most heteropolar semiconductors; we recall that in
such compounds the conventional phase-matching
scheme is not operational. With the magnetic f ield
switched on, the left-circularly polarized (LCP) and
right-circularly polarized (RCP) waves of the same
frequency experience different refractive indices,
n6
k � nk 6 gk�2nk, which are split by an amount

gk�nk that depends on the magnetic field and the
magneto-optic coupling strength. Accordingly, phase
matching by dispersion compensation can be achieved
with a proper combination of circular polarizations for
the pump, signal, and idler waves.

We introduce the circularly polarized basis
e6 � �ex 6 iey ��

p
2 and separate the electric f ields
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into circularly polarized components labeled 6 for
each frequency, or v3 � v6

1 1 v6
2 with v3 � v6

3 .
Keeping only the lowest-order optical and magneto-
optic nonlinearities, using the constitutive relations
and wave equation (1) of Ref. 2, we find that the
involved fields inside the cavity are resolved into
forward- and backward-traveling components accord-
ing to
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where E6
vk
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6 ? Evk . The boundary conditions of the

cavity are at z � 0 and z � L:
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where EI6
vk

and ET6
vk

are the incident and the transmit-
ted fields, respectively, and t

�0, 1�
6 �vk� and r

�0, 1�
6 �vk�

are the complex amplitude transmission and ref lec-
tion coeff icients, respectively, as given explicitly in
Ref. 3, when temporal dispersion and lowest-order
magneto-optic interaction are taken into account.

Below we restrict the theory to a singly resonant
cavity, which is transparent for the idler and the pump
waves, for which r

�0, 1�
6 �vk� � 0 and t

�0, 1�
6 �vk� � 1, where

k � 1, 3, and EI6
vk

� 0, where k � 1, 2. When we take
new real and positive variables u6

k , v6
k , w6

k , and c6
k ,

according to the ansatz

Ef6
vk

�z� � �C6
k u6
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where C6
k are normalization constants with magni-

tudes determined by the optical and magneto-optic
nonlinearities of the medium,2 and where the parame-
ters gk are the magneto-optic gyration constants,
which are directly proportional to the magnetic
field H0, after applying the slowly varying envelope
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approximation we obtain the set of equations for the
forward-traveling intracavity waves:
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where Eqs. (2a) constitute the Manley–Rowe relation,
ref lecting conservation of energy f low in the forward
direction, and the backward-traveling intracavity
waves are described by

v27�z� � jr
�1�
6 �v2�j2u6

2 �L� , v17�z� � v37�z� � 0 ,

c27�z� � arg r
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where k2
6 � C6

1 C
6�
2 C7

3 , and where we define
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2 n2 2 v6
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and the relative phase angle

u6 � �Db6 7 Da6�z 1 w7
3 2 w6

2 2 w6
1 1 arg k6 .

From Eqs. (2), the pump wave obeys
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with u7
3b � uI7

3 as the input pump intensity and
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where s26 � u6
2 �0��uI7

3 is the signal-to-pump ratio
and f6 � �Db6 7 Da6���2jk6j �uI7

3 �1�2� is the dimen-
sionless normalized phase mismatch. This equation
can now be integrated in terms of Jacobian elliptic
functions,4 and, using the Manley–Rowe relations, we
give the envelopes of the forward-traveling intracavity
fields as
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where the modulus j6 of the elliptic functions is
given as
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In Eqs. (3), K�j6� denotes the complete elliptic integral
of the first kind.4 One also obtains the phases of the
signal and the idler envelopes as
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Solutions (3) correspond to the classical solutions ob-
tained in second-order electric–dipolar nonlinear op-
tics,5 and here they are extended to include magnetic–
dipolar interactions as well.

By use of solutions (3) and u6
2 �0� � R6u

6
2 �L�, where

R6 � jr
�0�
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6 �v2�j2 is the LCP–RCP signal cavity
round-trip ref lectance, the signal-to-pump ratio s26 is
then determined from
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where z6 � �uI7
3 �1�2jk6jL is the dimensionless input

pump intensity normalized to cavity length and mate-
rial constants (characteristic interaction length). The
cavity condition for the resonant signal is similarly ob-
tained from the arguments of boundary conditions (1)
as
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where m is any integer. The phase-matched sig-
nal and idler frequencies are determined by the
phase-matching conditions Db6 7 Da6 � 0 as
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where v20 � �n3 2 n1�v3��n2 2 n1� is the
phase-matched signal frequency in the absence of
a static magnetic field.

The LCP and RCP threshold pump intensities are
obtained from Eq. (4) in the small-signal limit, where
s6 ,, 1, as

cosh��1 2 f2
6�1�2z6, th� �

∑
1 2 �1 2 R6�f2

6

R

∏1�2
. (5)

The pump threshold versus normalized phase mis-
match is shown in Fig. 1 for a set of signal ref lectances.
From Eq. (5), real solutions for the pump threshold re-
quire that �1 2 R6�f2

6 # 1; the corresponding limiting
boundaries in the �f6, z6, th� plane are shown by the
dashed curves. The intracavity signal-to-pump ratio
s26 versus phase mismatch f6 is shown in Fig. 2.

An important feature of the MOPO operation can
easily be appreciated from this analysis, namely, that
spatial walk-off does not appear anywhere because the
circular birefringence does not cause angular separa-
tion of the LCP and RCP waves, contrary to the case
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Fig. 1. Threshold pump z6, th versus normalized phase
mismatch f6 for values of R6 � jr

�0�
7 �v2�r�1�

6 �v2�j2 of A, 0.6;
B, 0.2; C, 0.9; and D, 0.95. The dashed curves indicate
the limiting trajectories for real z6, th.

Fig. 2. Intracavity forward-traveling signal-to-pump ratio
s26 versus normalized phase mismatch f6. z6 � 1, and the
values of R6 are A, 0.6; B, 0.8; C, 0.9; D, 0.95.

of linear birefringence with ordinary and extraordi-
nary waves in conventional optical parametric oscilla-
tor with anisotropic crystals.

Also correlated with this feature is the possibility of
having a MOPO that uses an isotropic nonlinear crys-
tal, as in the case of, for example, crystals belonging
to the cubic point-symmetry class, e.g., 43m, a case
that is not possible in conventional optical parametric
oscillator operation because of phase mismatch. This
raises the possibility that one can use heteropolar semi-
conductors, which possess some of the highest values
of second-order susceptibility x �2�, at least an order of
magnitude higher than those of the ferroelectrics and
other oxygen-polyedra-based compounds that are cur-
rently used as optical parametric oscillator materials.
This possibility has favorable repercussions for thresh-
old condition and propagation analysis.

It is evident that application of a static magnetic
field, besides providing the circular birefringence that
one needs to achieve phase matching, through its
control and variation also provides frequency-tunabil-
ity control. This implies that materials with large
magneto-optic coupling strength (Verdet constant) in
the transparency range and, simultaneously, large
values of second-order susceptibility should be chosen.
Such a class of materials is that of the diluted mag-
netic semiconductors, e.g., Cd12xMnxTe and similar
magnetic impurity-doped II–VI semiconductivity
compounds, in which a spin-exchange interaction6

leads to giant Faraday rotations that still preserve the
electronic structure of the undoped compound with its
high value of x �2�.

The transparency range of Cd12xMnxTe extends up
to 2 eV �l 	 0.6 mm� and down to 0.06 eV �l 	 16 mm�,
limited by the onset of band-to-band transitions and
two-photon absorption, respectively; this transparency
range sets the frequency range for the pump and the
idler and signal (keep in mind that two-photon tran-
sitions may also be a limiting factor). The figures of
merit of these materials seem favorable, and a rough
estimate gives a 5% tunability range around the de-
generate point, v6

1 � v6
2 , for magnetic field intensities

up to 	1 T.
Besides its potential and new device features, the

MOPO will open the way to interesting studies into
quantum optical effects with circular photon states in
regard to quantum noise, twin-state interference and
correlation, and other quantum magneto-optic aspects.
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