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We discuss some general aspects regarding the nonlinear optical gyrotropy with
particular emphasis on the photoinduced modifications and control of the polarization
state of a beam through light self-action. Both artificial and natural gyrotropic materials
are considered and we show that in the former class the magnetooptic interaction can
lead to a striking behavior because of the nonreciprocity. We discuss different configura-
tions of nonlinear interactions in gyrotropic media with certain applications and
estimations of the relevant coefficients.
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INTRODUCTION

The polarization state of the light reflects [1, 2] the vector nature of the
electromagnetic field, in particular the interplay between its electric
and magnetic parts, and introduces topological features that have
important implications regarding discrimination and robustness of
certain electromagnetic interactions. This has already found numerous
and important optical applications in the linear regime [3] but the
nonlinear regime offers in addition the possibility to modify and
control the polarization state of a beam through light self-action or
photoinduced processes with far-reaching repercussions in applications
as well. This can be particularly striking when gyrotropy, or the ability
of a material to rotate the polarization state, and nonreciprocity come

* Corresponding author.

251



252 M. HADDAD et al.

into play as in the case of magnetooptical interactions; gyrotropy is also
encountered in optical activity, a manifestation of nonlocality in the
field-matter interaction.

Notwithstanding the fundamental interest and technological poten-
tial of such aspects their study has not been pursued to any
consequence in nonlinear optics. One reason is the complications
engendered by the nonlocal character of electromagnetic interactions
and the intermingling of electric and magnetic effects that in essence
underlie gyrotropy and contrast with the commonly made assumption
in nonlinear optics [4, 5] that the matter-field interaction is local and
only electric effects are involved (electric dipole approximation).
Another important reason is the apparent smallness of the physical
parameters that govern such nonlocal effects unless certain provisions
are made to enhance them with concommitant complications.
However both reasons loose much of their deterring impact when
the relevant effects are put in the proper perspective; the gyrotropic
interactions indeed address features, namely polarization state
rotations, that allow outstanding discrimination [3,6] against the
background of those encountered in the usual nonlinear optical
processes. In addition the gyrotropic nonlinear optical interactions are
of much fundamental interest per se and their exploitation opens some
intriguing and novel perspectives.

Here we summarily discuss some aspects related to photoinduced
gyrotropy [7], namely the case where the gyrotropic power of a
material can be modified by the light itself, and some of its
implications in nonlinear optical propagation. Particular attention
will be given in configurations where non-reciprocity is also present for
instance in the case of artificial gyrotopy due to the presence of a static
magnetic field and can lead to interesting technological developments.
This is, for instance, the case when unidirectional control or shielding
of optical signal transfer is an issue, or in connection with storage and
transfer of coherence, quantum optical or spin coherence in particular.

GYROTROPY. GENERAL ASPECTS

Optical gyrotropy or circular birefringence and circular dichroism is
the ability of a material to rotate [1—6] the plane of polarization of an
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incident linearly polarized plane wave after proﬁagation inside the
material. All materials may naturally or artificially possess this
property. Irrespective of the physical mechanisms that underlie this
property, the constitutive relation between an oscillating electric field
E and electric induction D = E+447P in a gyrotropic medium where P
is the induced polarization can be cast [1,2] in the form

D=cE+i[ENg) . (1)

Here, g is the gyration vector, which for isotropic media and crystals
with cubic symmetry is paralle] to the wavevector k in the natural
gyrotropy (optical activity/natural rotatory power) and to the
externally applied static magnetic field Hy, = HpZ in the artificial one
(Faraday rotation); in anisotropic bodies, the relation between g and k&
or Hy is tensorial. We shall disregard effects of higher than first order
in k or Hy; here, k = (wn/c)k where c is the light velocity in vacuum
and # is the refractive index at frequency w.

The most striking implication of the vector product in Eq. (1) is that
it lifts the degeneracy between left (—) and right (+) circularly
polarized modes inherent in all bodies when g = 0. This is the circular
birefringence/dichroism, namely that the refr_active/absorptive indices
are different for left and right circularly polarized modes with the two
modes now propagating with different phase velocities, ¢/n_ and ¢/n 4,
respectively. This can be readily deduced from the dispersion relation

n’le—k(k-e)] —nle+i(eng) =0 2)
which is simply obtained [1-3] by inserting relation (1) in the
propagation equation

VA(YAE)=-D/c? (3)

in the linear regime. Neglecting terms higher than linear in g relation
(2) can also be written

1 \2
D —— = 2
(l_c + T g) g ‘ 4)
2

or n*, =n}+g, for the left and right refractive indices with n3 = ¢,
the linear dielectric constant. The polarization state of a linearly
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polarized beam undergoes a rotation by an angle

Or = Z—f(}’l_ - l’l+) (5)

after propagation over a distance L inside the medium. The
polarization eigenmodes are now the left and right circularly polarized
ones E. =e¢*, -Ewith é. = (&y+i&)/V2.

Although g is along k in both the artificial and natural gyrotropy,
there is an essential difference [1—3] between the two classes most
easily grasped in the case of isotropic or cubic medium with g = fk,
where f'is a material property and k is along the z-axis. For a naturally
gyrotropic medium one obtains from (2) E,= + iE, irrespective of
the direction of the wavevector while for an artificially gyrotropic
medium (with a magnetic field present along the z-axis) one gets
E.= * i E, for one propagation direction and the opposite sign for
the reversed one with respect to the magnetic field. This is the
nonreciprocity previously referred to and is a consequence of the
breakdown of the time-reversal symmetry that a static magnetic field
introduces and can also be viewed as an artificial irreversibility without
the presence of a ““bath”. The distinction between natural and artificial
gyrotropy is most striking when the beam is normally reflected back
into the gyrotropic medium, and retraces its path in the backward
direction: at each point, its rotation angle is restored in a natural
gyrotropic medium while it doubles in an artificially one; the Faraday
effect is thus nonreciprocal. More generally the nonreciprocity is
manifested whenever a property is non invariant under the transfor-
mation E+ — EZ.

In an intense light beam, the optical properties of a medium undergo
[4,5] modifications and become field amplitude dependent. Of
particular interest here are the photoinduced modifications that are
proportional to components of the bilinear form P = (en/2n)E : E*
and do not involve any frequency shifts; we remind that the light
intensity (magnitude of the Poynting vector) is I = Tr P. One such
photoinduced modification affects the dielectric constant which
becomes & = gy + €2/ or i=ny+n,1 in the simplest scalar case and
this is the extensively studied optical Kerr effect that among other
nonlinear optical processes underlies the photoinduced linear birefrin-
gence, optical phase conjugation, optical bistable operation in a
resonator and soliton formation in a fiber.
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Similarly, one can have photoinduced gyrotropy [7] or photo-
induced circular birefringence/dichroism connected with photoinduced
modification of the gyration vector or equivalently f =fo+/>1 in an
isotropic medium, keeping in mind the previously evoked distinction
between natural and artificial gyrotropy. Referring to (4) this results in
photoinduced modifications by different amounts of the left and right
indices or fi+ = ny +ny4 Tand /i_ = n_+n, _ I and accordingly the
polarization rotation angle for a linearly polarized incident beam now
becomes

- wL_ L
fr = %(n_ — i) =“2’—C(An+ Anod) =g + 0] = O +0xr. (6)

where An=n_ — n,,Any=ny _ — ny4 and Ozis given by (5); Oz = 61
~L =021 1s the light (photo) induced modification of the rotation angle.

The previous considerations with the inherent simplifications related
to the assumed isotropy of the medium can be recast in a rigorous and
general form by consistently introducing the relevant nonlinear
polarization sources expressed in terms of the phenomenological
(macroscopic) nonlinear susceptibilities and the appropriate combina-
tions of field amplitudes; expressions of these polarization sources and
the corresponding susceptibilities can be derived [4, 5] from micro-
scopic quantum mechanical considerations and modelling of the
matter-field interaction.

Thus in the case of natural gyrotropic media the polarization up to
cubic terms in E can be written

P=x"E+ XV E) + % E+xPE(Y : E)
+x(>EEE+ ®) EE(V E) (7)
or by expressing V: E in terms of V: E and ¢V A E = —B, the latter

obtained from Maxwell equations, expression (7) can be recast in the
form

1 . .
P=x"E+_xVB+xPEE+ %_&S)EB
+xPEEE+ %XS)E EB (8)

for an isotropic medium. One can easily see, from the two first terms in
(8) together with B = —cV A E, that one precisely recovers relation (1)
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for the linear part of the electric induction. One can also derive the
expression of the Poynting vector and that of the energy density.

In the case of the artificial gyrotropic media where a static magnetic
field H is present the polarization can be written

P=xVE+xPEH,+xPEE+xYEEH,
+xPEEE+xYEEEH, )

Again the two first terms can be recast in a form to recover expression
(1) for the linear part of the electric induction. The number of
independent components of X,(‘Z) and those of the previously
introduced Xg) can be derived using the symmetry operations of the
medium and have been derived for several symmetry classes. Note that
the magnetic fields are not true vectors and care must be paid when
applying the space inversion operation.

The quantum mechanical expressions of the susceptibilities x(") and
xx) can be derived by a perturbative approach starting with the
appropriate field-matter interaction terms in the hamiltonian as will be
briefly discussed later together with their order of magnitude.

NONLINEAR GYROTROPIC PROPAGATION

The study of the nonlinear propagation in gyrotropic media can be
approached by inserting expressions (7) or (8) in the Eq. (3) and
applying the slow varying envelope approximation [4] for the field and
polarization sources of a given frequency. This approach was first
applied [8] for the case of frequency non preserving processes, where
the phase mismatch is a key issue, such, as second and third harmonic
generation, SHG and THG respectively, and more recently also
generalized and extended [9] to the case of optical parametric
amplification and oscillation, OPA and OPO respectively, in nonlinear
gyrotropic media. In parallel this approach was also extended and
applied [10] in the case of frequency preserving processes where the
phase mismatch is of lesser importance like intense beam self-action
[10—-12], degenerate four wave interaction [13], nonlinear gyrotropic
resonators and cavities [14—18]. We briefly consider this case here
since it concerns the photoinduced gyrotropy; furthermore we restrict
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ourselves to the case of artificially gyrotropic media but the case of
naturally gyrotropic media can be treated along similar lines.

Starting with (3) and inserting (9) and (1) with P=P;+ Px; we
obtain

_V__/\(_V_/\E) +QL: —47TENL (10)
where Dy = E+4nP;, and Py are the linear and nonlineér parts in (9)
respectively and setting

1 .
E='2—(é+E++éE..)e*lwt + c.c. (11)

with Ex = A.e*+ and neglecting ’phase mismatched terms when
applying the slow varying envelope approximation one gets [10, 11]
two coupled equations for the two amplitudes

O0A

—4as AL +K
0z

0A k", 0%A
it = (=) (A« [+ 245 1)A
(12)

where k', and k", are the inverse group-velocity and chromatic
dispersion respectively, y = wxgc)xx [2¢, v = —3iw(x,(;)yyz + XE:QW)HO /8
and o 4 are distributed linear loss coefficients. Similar equations have
also been derived for the nonlinear propagation of pulses in optical
fibers. In the stationary regime without losses these equations reduce

to

0A 4

= (cEN(A L P+ 245 P)A (13)

These equations have been extended and used to treat the problem of
degenerate four wave mixing, and with appropriate boundary
conditions to derive the transmission characteristics of nonlinear
gyrotropic cavities.

The nonlinear optical propagation in gyrotropic media exhibits
some features that are not readily and directly observable in non-
gyrotropic media; some of them are specific only to the presence of
gyrotropy and can be best assessed in isotropic media. Thus in
principle in even isotropic media phase matching in SHG, THG or
OPA and other frequency non preserving nonlinear optical processes
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can be achieved [8, 9] by compensating the refractive index mismatch
at two different frequencies, for instance the fundamental and its
harmonics in SHG or THG, with the circular birefringence and using
appropriate circularly polarized beams. This was initially proposed [8]
for SHG and THG in naturally gyrotropic media where however the
circular birefringence is very weak in the optical range to achieve
dispersion compensation. More recently this has been extended [9] to
the case of artificial gyrotropic media where compensation seems more
feasible than in the natural gyrotropic ones with some interesting
applications in magneto-optical, optical parametric processes such as
MOPG, MOPA and MOPO. For these later cases the Manley—Rowe
relations [4] that essentially reflect the flux or electromagnetic
momentum (Poynting vector) conversation have been complemented
[9] with those of the electromagnetic angular momentum conservation
and applied to derive polarization state selection rules for the
interacting and generated beams in the optical parametric processes.
In the case of frequency preserving nonlinear optical processes the
phase matching problem is less of an issue and a whole class of new
types of self-action [10], optical lensing and grating effects can be
envisaged. Thus gyrotropic fibers can sustain helicoidal solitary waves
[11,12] of a very robust type; in particular a new scheme for soliton
mode locking by nonlinear Faraday rotation has been proposed [11]
that in essence exploits the nonreciprocity and the possibility to
compensate the linear Faraday rotation with the nonlinear one over a
given distance in the fiber, namely when 6y; — 6g=0mod (27). The
case of degenerate four wave interaction has also been treated [13] to
some extent in both natural and artificial gyrotropic media in this case.
The most striking difference between the two classes of media results
from the presence of nonreciprocity in the later case which destroys the
time reversal symmetry and the optical phase conjugation properties
while these are preserved in the former case where reciprocity is
present. This is apparent both in the propagation direction of the
signal beam and the ellipticity behavior of its polarization in the two
classes of gyrotropic media and also in comparison to non gyrotropic
ones. A complication that arises in the nonlinear propagation in
gyrotropic media is the decoupling of effects proper to photoinduced
circular birefringence (photoinduced gyrotopy) from those to the
optical Kerr type photoinduced birefringence; this can be achieved by
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proper selection of beam geometry and analysis of the polarization
Stokes parameters.

The nonlinear propagation accumulated over multiple reflections in
confined gyrotropic media such as gyrotropic resonators [14—18],
Fabry Perot cavities, ring cavities and other resonators filled with a
gyrotropic medium leads to several strikingly new characteristics
regarding transmission, bistable and multistable behavior, instabilities
and eventually transition to chaotic behavior. The nonlinear
propagation problem in a cavity can actually be treated as a
degenerate four wave interaction will all beams collinear and
appropriate boundary conditions related to the mirror transmission
and reflection. In the case of a gyrotropic ring cavity [15—17] apart
from quantitative aspects there is no qualitative difference in the
transmission behavior between an artificial and a natural gyrotropic
one the main advantage with the artificial one being the possibility to
tune the gyrotropic strength and attain the different regimes by
changing the magnetic field intensity H,. Several interesting features
have been predicted in this case besides or in conjunction with the
bistable behavior. Thus close to threshold values the resonator may
covert [16] small changes of the input intensity into large variations of
the polarization state and have the cavity act as a polarization state
filter; in particular the pitch fork bifurcation can be completely
cancelled with small amount of gyrotropy. Also a flip-flop behavior
for the polarization state can be obtained by superposing to the input
beam an appropriately circular polarized trigger pulse. Finally
modulational polarization instability can occur in such a ring cavity.

The case of the nonlinear gyrotropic Fabry Perot cavity [18]
consisting of an artificial gyrotopic medium between two parallel’
mirrors introduces strikingly new features which cannot occur in a
Fabry Perot cavity filled with a natural gyrotropic medium. This is
because reciprocity is preserved in the later case and in particular the
transmission characteristics are not qualitatively much different from
those obtained in the ring cavity. In contrast in a nonlinear
magnetooptic (artificial gyrotropic) Fabry Perot cavity nonreciprocity
is present and manifested in normal reflection; because of the
cumulative effect of the multiple reflections and optical nonlinearities
then novel features and patterns on the transmission appear. A
detailed analysis [18] of the transmission characteristics in terms of the
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Stokes parameters revealed that the nonreciprocity in this case leads to
specific transmission pattern and, in particular, to a polarization
controlled multistability at constant input intensity. It is also
effectively switched off/on for certain parameter regimes.

The propagation in nonlinear gyrotropy media still poses some
fundamental problems in particular related to the nonlocality and the
boundary conditions which will reveal some new regimes in the near
future.

NONLINEAR GYROTROPIC POLARIZATION

Along with the problem of the nonlinear optical propagation specific
to the gyrotropic media that of the nonlinear gyrotropic polarization
source and response in these media is quite intriguing and still not well
settled partly due to conceptual difficulties and partly due to still
unsettled computational complications as will become shortly evident.

At the outset the nonlinear response of a gyrotropic medium can be
obtained [4,5] by a perturbative treatment of the matter-field
interaction as in the case of the nonlinear electric polarization terms
in non-gyrotropic media only now besides the electric dipolar
interaction term additional ones must be included specific to the
gyrotropy. For the case of natural gyrotropy this results [5, 19, 20] in
the form

K=-p-E-m-B—qVE (14)

for the matter-field interaction where p, m and g are the electric dipole,
magnetic dipole and electric quadrupole operators respectively of the
electrons; B and E are related through the Maxwell equations and we
disregard here the distinction [5] between local (microscopic) and
macroscopic fields which may affect at the final stage the magnitude of
the coefficients. Within the physical context we restrict ourselves here
and exemplified by the form of the macroscopic polarization (7), in the
perturbative treatment the electric dipole term p - E is treated up to the
requested order in the different terms in (7) while the other two terms
in (14) are kept only to first order. Concommitantly one must also set
up the induced magnetic and quadrupolar polarization densities as
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well, M and Q respectively, but the relevant coefficients are related by
certain permutation symmetries with those of the electric polarization
density (7) and we need not discuss them explicitly here. It is then quite
evident to see how nonlocality creeps [5] into natural gyrotropy
namely through the presence of spatial derivatives of the electric
oscillating field E and also the presence of the oscillating magnetic field
related to the electric one through Maxwell’s equation B = —cV A E.
In particular if the plane wave Fourier representation of the fields is
used these derivatives introduce a k-dependence or equivalently
wavelength dependence in the susceptibilities, the so called spatial
dispersion [21], another manifestation of nonlocality and closely
connected with natural gyrotropy or natural optical activity. The
formal quantum mechanical expressions of the gyrotropic nonlinear
susceptibilities have been derived [20] for different processes but their
computation has not been attempted neither their behavior close to
resonances has been studied to any extent.

For the case of the artificial gyrotropy the relevant interaction
hamiltonian [4,19] is

W =—p-E—m-Hy (15)
where now the static magnetic field Hy bears no relation to the oscillating
electric or magnetic field of the e.m. field. Referring to the macroscopic
polarization (9) the different terms there can be obtained by a
perturbative treatment of (15) keeping terms up to the requested order
in the electric dipole interaction 4 - E but only linear in m - H,. The time
reversal symmetry here breaks down and nonreciprocity is introduced;
furthermore the susceptibility coefficients satisfy [1,22]. Onsager type
relations. The relevant susceptibilities have been derived [4,23] for
several magnetooptical processes but here again their computation and
resonance behavior have not been studied to any extent.

At the qualitative level the magnetooptical effects are relatively well
understood but their quantitative prediction is lagging or missing.
Most of the effects related to the different magnetooptical polarization
terms and their inverse have been observed and some cases are
exploited in applications or are in wait. Thus the Faraday effect is
related to the polarization source XI(.;)EHO which can be related to the
gyration vector g in the linear part of (1); XI(;)EE* is related to the
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inverse Faraday effect or photoinduced magnetization, in a certain
way the analogue of the optical rectification effect. The photoinduced

Faraday effect [7] is related to X,(;)EE*E Hj and clearly one can have

the inverse effect in X,(f})EE*EE* which is an additional contribution to
the photoinduced magnetization.

These later effects are however relatively weak unless one is close to
a resonance and also makes provisions to enhance the magnetooptic
coupling. The first situation can be encountered in the narrow atomic
resonances [24,25] of atomic vapors where for the first time such
effects were observed or in the narrow and intense excitonic transitions
[26] in quantum confined nanostructures of semimagnetic semicon-
ductors where in addition the magnetooptic coupling can be enhanced.
In the later case, following previous studies in bulk compounds [27]
indeed giant photoinduced Faraday rotations have been evidenced [26]
close to such excitonic transitions as well as photoinduced magnetiza-
tion with circularly polarized light in the absence of an external
magnetic field. Besides the impact of the resonance the enhancement
here mainly results from the specific spin-exchange interaction Js- S
between the delocalized sp-type band electrons and the magnetic
impurity localized d-type electrons in these materials [27]. This
effectively results in a two-orders of magnitude temperature dependent
enhancement of the Landé factor g from its bare electron value go=2.
The underlying mechanism [26] in this giant photoinduced Faraday
rotation is the polarization state selective saturation of the Zeeman
components of the excitonic transition in the presence of a magnetic
field; the photoinduced Faraday rotation angles can be as large as
those of the linear Faraday rotation and in fact cancel the later namely
they can reach values of the order of 20 degrees over a 1um thick
multiquantum well nanostructure in moderate magnetic fields (~27")
and moderate light intensities. In the absence of the magnetic field
circularly polarized light of comparable intensity can induce magne-
tization of up to 0.57 in the same structure. Several additional
processes were identified to contribute to these photoinduced
gyrotropy and magnetization. One can envisage several applications
of these effects in particular non-reciprocal light valves and unidirec-
tional shielding of optical information.

The corresponding effects in naturally gyrotropic media such as
optically active media or chiral molecular systems are much harder to
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evidence because of the inherent nonlocality in the matter-field
interaction which complicates the description of the processes and
also because of the smallness of the relevant coefficients in the optical
range even close to resonances. For instance photoinduced optical
activity [28] in chiral molecules such as helicenes hardly exceeds a few
minutes of a degree in a high concentration sample of 1 cm length and
intense light beams. The relevant physical parameter in the natural
gyrotropy is the Rosenfeld rotational strength [29,19] Ry, = Im(p_ -
m,,) of an electric and magnetic dipole allowed transition (g — n); this
is in essence a mixed vector product, since m is a pseudovector, and
represents an oriented quantum volume element imposing quite
specific restrictions on the electronic level configuration since these
strenghts must satisfy the sum rule Z,,Im(ﬁgn -my,,) = 0. Thus this
implies that the relevant transitions occur in pairs partially cancelling
each other in this sum with the rotational strengths reversing sign
when going from one enantiomer to the other while their magnitudes
are preserved; this is a consequence of the stereochemical structure of
these molecules. To some extend the magnitude and sign of these
rotational strengths can be determined by measuring the circular
dichroism of the molecules and can give [6, 19] important information
regarding the stereochemical structure of these molecules; polarization
sensitive nonlinear optical techniques can provide [30—32] additional
information in particular regarding rotational strengths between
excited states and vibrational dynamics which cannot be accessed
with the conventional circular dichroism measurements. :

There is growing interest in the study of nonlinear gyrotropic effects
on surfaces and interfaces. Both natural gyrotropic surfaces and
interfaces such as chiral organic ones [33, 34] and artificial gyrotropic
ones such as thin magnetic films [35, 36] with modulated magnetization
present are being studied with polarization state and surface symmetry
sensitive nonlinear optical techniques. The most promising technique
is that of the reflection of the second harmonic and sum frequency
which is very sensitive to the breakdown of inversion and mirror
reflection symmetries but higher even order processes can also be
envisaged. There are several interesting fundamental aspects related to
such studies with several competing mechanisms contributing there
and satisfying certain selection rules. The extension of such studies and
the understanding of these mechanisms in the case of chiral surfaces
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and interfaces can lead to the development of powerful techniques to
study and control such important aspects as growth of chiral
~supramolecular or crystalline complexes that play an important role
in biology, biochemistry, drug development, asymmetric catalysis and
molecular recognition. In the case of magnetic interfaces and surfaces
such studies can lead to better understanding of the surface
magnetism, in particular that of the last layer of magnetic materials,
and the magnetooptic recording techniques.

EVALUATION OF THE GYROTROPIC SUSCEPTIBILITIES

The quantummechanical expressions of the nonlinear gyrotropic
susceptibilities have been derived [4,37,20,17] for practically all
envisageable nonlinear gyrotropic processes with the complete
frequency and transition strength dependencies well exhibited. There
have been no attempts to estimate these coefficients either in a
transparency region or close to a resonance and this situation is
actually true with few important exceptions even for the case of the
relatively much simpler linear gyrotropic coefficients namely the linear
rotatory power and the Verdet constant for the natural and artificial
gyrotropy respectively. The few important exceptions concern the
estimation of the rotatory power and circular dichroism coefficients of
certain optically active organic molecules and chiral polymeric chains
either conjugated or saturated. Here we do not count the extensive
studies of circular dichroism of biological organic molecules used for
the determination of certain stereochemical structural aspects not
directly transferable to the estimation of the relevant gyrotropic
coefficients.

The difficulty in estimating the gyrotropic coefficients stems from
their complex structure involving both electric dipole and magnetic
dipole transition elements, in contrast to the electric dipolar
susceptibilities that involve only electric dipole transition elements,
and from other very subtle three-dimensional aspects namely the
oriented “quantum  volume” transition elements such as Im(p - m,,)
involved there. These together with the sums-over-states that appear in
these coefficients require very complex calculations with very accurate
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wave functions both in regard to amplitude and phase. In fact these
coefficients are in general complex numbers even away from
resonances in contrast to the electric dipolar susceptibilities which
are real and essentially only sensitive to the amplitude of the wave
function (or equivalently, the electronic charge density distribution).
In particular the calculation of the matrix elements of m or L involves
derivatives of the wave functions that appreciably amplify or suppress
certain features and are therefore very sensitive to errors or
inaccuracies there. The situation is somewhat better in the case of
magnetooptic coefficients but still the estimations even here have not
been developed to any extent.

Keeping well in sight the present lack and future need of consistent
and physically acceptable calculations of the nonlinear gyrotropic
coefficients we propose here an order of magnitude estimation based
on dimensional scaling arguments and comparison of the electrical
dipolar susceptibilities and the gyrotropic ones of the same order in the
electric field amplitude. By referring to their quantum mechanical
expressions we expect that

AXO ax

where Ax"” and Ax® are the coefficients that describe the gyrotropic
polarization terms linear and cubic in the electric field amplitudes
respectlvely 1n the case of the natural gyrotropy Ax(®) = kx and

Ax®) = kx and in the case of the artificial gyrotropy Ax(!) = X( )Ho
and Ax®) = ()Ho respectively. The ratio Ax®"/x(" can be easily
determined experimentally by measuring the polarization rotation
angle of a linearly polarized optical beam and expressing it in terms of
the optical rotatory power or Verdet constant. One can extent this
approach also close to a resonance. Thus for the photoinduced
Faraday rotation in a glass material with ¥'=10[rad T ~'m~'] and
ng=1.5at A=1.5pm we find o= Ax®/x® =107 for Hy=1 T on the
other hand for the case of photoinduced optical activity we expect
xxPx® ~10"*at A~ 1.5 um, for a medium with ny= 1.5. This order
of magnitude estimation seems to be corroborated by some recent
attempts for more accurate estimation of these coefficients.
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GENERAL REMARKS

The optical gyrotropy and its modification by nonlinear optical
interactions is connected with some very fundamental problems in
matter-field interaction and propagation with far reaching applica-
tions that only recently started emerging. The relevant effects and in
particular the photoinduced gyrotropy can be appreciable and easily
discriminated against the background of other nonlinear processes.
Although still far-fetched some of these aspects and concepts may also
have [38] an impact in recent considerations on quantum mechanical
measurements. There are striking differences on the nonlinear
gyrotropic behavior of artificial and natural gyrotropic materials. In
the former class the inherent nonreciprocity of the magnetooptic
coupling can lead to conceptually novel applications regarding
unidirectional control or shielding of optical signal transfer, or storage
and transfer of coherence, quantum optical or spin coherence. The
latter is reciprocal but very sensitive to the nonlocal character of the
feld-matter interaction and the nonlinear optical gyrotropic effects
there can be exploited to develop sensitive diagnostic techniques of
chiral molecular systems in particular dynamical processes that can
take place there and their interactions. '
We expect that the growing study of nonlinear gyrotropic

interactions will lead to some new and interesting fundamental and
technological considerations.
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