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Abstract

We report on theoretical analysis of magneto-optically induced longitudinal perturbations
in chirped magneto-optical Bragg gratings. The induced perturbations considered are of
Lorentzian shape, with a spatial extent considerably larger than the spatial grating period
but at least an order of magnitude less than the geometrical length of the grating. In the
numerical simulation of the proposed device, we show on a high polarization state selectivity
in the region of the perturbation, with resonance peaks of transmission for circularly polarized
orthogonal components possessing a full width at half maximum as narrow as 0.18 nm,
meanwhile being separated by 0.6 nm.

Introduction

Currently one major research direction in photonics is towards bringing photonic devices into
a true nano-technological scale, with optical routing and switching ultimately performed in
a sub-micrometer length scale. However, in today’s high-performance optical systems the
necessary interaction lengths are still rather in the millimetre order, with typical devices of
fiber Bragg gratings and waveguiding structures in silica. In this respect, for these macro-
scopic systems, the introduction of magneto-optically induced local perturbations along the
light path imposes the interesting feature that the lifting of the polarization state degener-
acy can be locally exploited in the spectrum, leaving other essential requirements such as a
fixed spectral window width and position unchanged. It is the purpose of this work to show
on the possibility of a high polarization state selectivity in weakly modulated gratings by
introducing a magneto-optically induced perturbation of a macroscopic spatial extent.

In this paper, we focus on chirped optical gratings possessing a linear magneto-optical
effect. In the absence of a magnetic field, this class of gratings provide a flat window of
reflection, with its boundaries determined by the extreme values taken by the spatially
varying grating period. Furthermore, we consider magneto-optically induced perturbations
of Lorentzian shape, with a spatial extent which is considerably larger than the spatial grating
period but at least an order of magnitude less than the geometrical length of the grating.
In a linear magneto-optical medium as here considered, the complex-valued envelope of the
electric polarization density obeys the local constitutive relation [1]

Pω = ε0[(n
2(z) − 1)Eω + iEω × g(z)],

in which n(z) is the refractive index and g(z) the magneto-optically induced gyration vector.
The refractive index distribution n(z) is in the present case modulated around a bias index
n0 with a bias spatial grating period of Λ, as

[n2(z) − n2
0]/n0 = acf(z) cos [(2π/ξ) ln(1 + ξz/Λ)],
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Figure 1: Schematic illustration of a possible setup for magneto-optical generation of per-
turbations in a grating inscribed in an optical waveguide along the z-axis.

where ac is the peak modulation strength of the grating, f(z) an apodization function being
unity in the active region and smoothly approaching zero at the ends of the grating, and
ξ the chirp parameter describing the strictly increasing or decreasing deviation of the local
grating period from the bias.

For the present case, we assume a gyration vector collinear with the direction of wave
propagation, taken as the z-axis of the geometry, and that its spatial distribution takes the
form of a Lorentzian perturbation,

g(z) = g(z)ez =
gp

1 + 4(z − zp)2/w2
p

ez,

where gp is the peak value of the perturbation, zp its spatial position, and wp its half-
maximum width. To fix the ideas as outlined in this paper, this shape of the perturbation is
what would result, for example, from an induction in the presence of a wire carrying an elec-
tric current across and in the vicinity of a spatially modulated magneto-optical waveguide, as
schematically illustrated in Fig. 1. However, it should be emphasized that the exact imple-
mentation of the setup for applying the magnetic field is not fixed by this schematic, neither
are the features of the introduction of magneto-optically induced perturbations limited to
the Lorentzian distribution.

In this model of the grating, the local resonance vacuum wavelength λ±
loc as function of

the spatial coordinate z follows from classical Bragg theory as twice the effective optical
period of the grating, as experienced by the respective left and right circularly polarized
components of the light, or

λ±
loc(z) = 2n0(Λ + ξz)(1 ∓ g(z)/2n2

0).

In order to separate equations of evolution for circularly polarized envelopes of forward
and backward travelling components, the optical wave is in a circularly polarized basis
e± = 2−1/2(ex ± iey) taken as

Eω = [e+Af
+(z) + e−Af

−(z)] exp(iωn0z/c) + [e∗
+Ab

+(z) + e∗
−Ab

−(z)] exp(−iωn0z/c),

where ‘±’ in the subscripts denotes left/right circular polarization state. By assuming slowly
varying apodization and an adiabatically changing grating period, subsequently applying
the slowly varying envelope approximation [2], the wave equation is cast into coupled mode
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equations for the field envelopes as

∂Af
±(z)

∂z
− iκf(z) exp

[

i
2π

ξ
ln

(

1 +
ξz

Λ

)

− i
2ωn0

c

(

1 ∓
g(z)

2n2
0

)

z
]

Ab
∓(z) = 0, (1a)

∂Ab
∓(z)

∂z
+ iκf(z) exp

[

− i
2π

ξ
ln

(

1 +
ξz

Λ

)

+ i
2ωn0

c

(

1 ∓
g(z)

2n2
0

)

z
]

Af
±(z) = 0, (1b)

where κ = ωac/4c is the coupling coefficient of the grating. Noteworthy is here the decoupled
form between orthogonal circular polarization states, stating that the modulation of the
effective refractive index couples a circularly polarized component of the forward propagating
field only to the backward travelling component of orthogonal polarization state, hence
reversing the helicity of a circularly polarized optical field in reflection.

Perturbation analysis of transmission properties

As they are stated, the coupled mode equations (1) provide a general description of wave
propagation in spatially modulated media, for an arbitrary magneto-optical perturbation
function g(z) and arbitrary apodization f(z), within the validity region of slowly varying
envelopes. Considering a sufficiently small chirp, with ξL/Λ � 1, the phase function of the
grating profile can be approximated as a polynomial

2π

ξ
ln

(

1 +
ξz

Λ

)

≈
2π

Λ

(

1 −
ξz

2Λ

)

z,

and by applying perturbation analysis of the direct scattering process described the coupled
mode equations, the backscattered fields can expressed as the first-order integral solutions [3]

Ab

−(0) = −iκAf

+(0)

∫ L

0

f(z) exp
[

i
2ωn0

c

(

1 −
g(z)

2n2
0

)

z − i
2π

Λ

(

1 −
ξz

2Λ

)

z
]

dz, (2a)

Ab

+(0) = −iκAf

−(0)

∫ L

0

f(z) exp
[

i
2ωn0

c

(

1 +
g(z)

2n2
0

)

z − i
2π

Λ

(

1 −
ξz

2Λ

)

z
]

dz, (2b)

where terms of the order of O(κ3) were omitted. From these integral expressions, the trans-
mitted optical fields can similarly be constructed from the perturbation series as

Af

+(L) = Af

+(0) + iκAb

−(0)

∫ L

0

f(z) exp
[

− i
2ωn0

c

(

1 −
g(z)

2n2
0

)

z + i
2π

Λ

(

1 −
ξz

2Λ

)

z
]

dz, (3a)

Af

−(L) = Af

−(0) + iκAb

+(0)

∫ L

0

f(z) exp
[

− i
2ωn0

c

(

1 +
g(z)

2n2
0

)

z + i
2π

Λ

(

1 −
ξz

2Λ

)

z
]

dz. (3b)

The interpretation of the polarization state dependence of the obtained solutions is aided by
the introduction of the Stokes parameters [4], which for the input optical field yield

S
(in)
0 = |Af

+(0)|2 + |Af
−(0)|2, S

(in)
1 = 2Re[Af∗

+ (0)Af
−(0)],

S
(in)
3 = |Af

+(0)|2 − |Af
−(0)|2, S

(in)
2 = 2Im[Af∗

+ (0)Af
−(0)],
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and similarly for the transmitted field

S
(tr)
0 = |Af

+(L)|2 + |Af
−(L)|2, S

(tr)
1 = 2Re[Af∗

+ (L)Af
−(L)],

S
(tr)
3 = |Af

+(L)|2 − |Af
−(L)|2, S

(tr)
2 = 2Im[Af∗

+ (L)Af
−(L)],

in which S
(in)
0 and S

(tr)
0 are measures of the input and transmitted intensities, while S

(in)
3 and

S
(tr)
3 determine the ellipticity of the corresponding polarization states.

Discussion

For the numerical investigation of solutions to the coupled mode equations, the apodizing
function f(z) was chosen as

f(z) =











[1 − cos(πz/La)]/2, if 0 ≤ z < La,

1, if La ≤ z ≤ L − La,

[1 − cos(π(z − L)/La)]/2, if L − La < z ≤ L,

where La is the effective apodization length. Intensity transmission spectra were calculated
for a typical grating of length L = 20.0 mm, index n0 = 1.44, and peak modulation strength
a = 1.0 × 10−3. Designing the grating to possess a flat window of reflection ranging from
vacuum wavelength λa = 1530 nm to λb = 1550 nm, the initial grating period was chosen as
Λ = λb/2n0 = 538.2 nm. In order for the grating to span over a 20 nm window of reflection,
the chirp parameter was subsequently chosen as ξ = (λa − λb)/(2n0L) = −347.2 × 10−9.
In order to eliminate any Gibbs oscillations [5] in the spectrum, resulting from the grating
boundaries, an apodization over La = 0.4 mm was found sufficient.

The magneto-optically induced perturbation, which has the main impact of opening
up for narrow transmission peak in the reflection band, was taken with a peak gyration
coefficient of gp = 0.7×10−3, perturbation width wp = 0.3 mm, and a centre position zp = 10
mm. The resulting calculated transmission spectra are shown in Fig. 2, for input optical
fields being left (LCP, solid curve) and right (RCP, dashed curve) circularly polarized. As a
consequence of the magneto-optically induced perturbation, in which the effective refractive
index of the medium locally experiences a differential shift of its bias for orthogonal circular
polarization states, the resonance peaks are slightly shifted to the left (for RCP) and right
(for LCP) of the central resonance as determined by the local grating period of the chirped
grating at the position of the perturbation. The spectral separation between the peaks
for orthogonal circular polarization states as they appear in Fig. 2 is 0.6 nm, and the full
width half maximum of each peak is 0.18 nm, hence providing a reasonable resolution for
applications.

The high definition of the transmission peaks of LCP and RCP states as shown in Fig. 2
also suggests that in the region of the perturbation, the transmitted polarization state un-
dergoes a radical change in its ellipticity, since the resonance of one polarization does not
overlap with the resonance of the orthogonal state. That so actually also is the case is
illustrated in Fig. 3, where the spectral dependence of the transmitted ellipticity S

(tr)
3 is

shown for a linearly polarized input beam, assuming the same grating and magneto-optical
perturbation parameters as in Fig. 2.
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Figure 2: The intensity transmission as function of vacuum wavelength λ, for left and right
circularly polarized input beam, drawn as solid and dashed curves, respectively. The shown
spectra were calculated for a grating profile with length L = 20.0 mm, bias index n0 = 1.44,
index modulation a = 1.0 × 10−3, peak gyration coefficient gp = 0.7 × 10−3, perturbation
width wp = 0.3 mm, geometrical initial period Λ = 538.2 nm, chirp ξ = −347.2× 10−9, and
with an apodization over La = 0.4 mm at each end of the grating.

At the ends of the spectrum, where the optical throughput is high, the feature intro-
duced with a locally induced perturbation is clear; since the boundaries of the grating are
left unperturbed, the polarization state selectivity there remains degenerate and a linearly
polarized input will leave the transmitted polarization state as linear, except for in the re-
gion in which the perturbation acts. In addition, by changing the spatial position of the
perturbation, hence changing the local resonance condition of the chirped grating, one may
also exploit the tunability of the spectral positions of the transmission peaks. In this case,
the primary control parameter is the positioning of the perturbation, while the strength of
the magnetic field plays a secondary role, only providing the means to compensate for any
fluctuations or deviations in grating quality along the axis of wave propagation.

Conclusion

In conclusion, we have in this paper reported on analysis of magneto-optical perturbations
introduced over a macroscopic length scale, in weakly modulated chirped gratings. Coupled
mode equations for the wave propagation in the perturbed medium were presented, and
their solution using perturbation analysis was outlined. For the model grating used in the
numerical evaluation, we predict a high polarization state selectivity induced in the region
of the perturbation while still maintaining the window of operation intact.

The main impact of the present work is that it shows on the possibilities opened by
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Figure 3: The transmitted ellipticity S
(tr)
3 = |Af

+(L)|2 − |Af
−(L)|2 as function of vacuum

wavelength λ, for a linearly polarized input beam (S
(in)
3 = 0). The numerical parameters

used are identical to those used for calculating the spectra in Fig. 2.

introducing magneto-optically induced perturbations of a macroscopic length scale, in grat-
ings which need not to possess high index contrast, but which nevertheless can provide a
considerably high spectral extinction ratio.
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