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Abstract. The theory of parametric generation and amplification in artificially gyrotropic
(magneto-optic) media is presented. Complete solutions for signal and idler are given in
terms of Stokes’ parameters, and polarization state dependences of applied static magnetic
field strength are discussed in terms of trajectories of the reduced Stokes vector on the
Poincaré sphere.
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1. Introduction

Three-wave coherent interactions of the type ω1 + ω2 = ω3

underly some of the most efficient nonlinear optical processes
with important applications such as optical parametric
generation (OPG) and amplification, which in a confined
geometry lead to the onset of optical parametric oscillation.
Until now these processes have been almost exclusively
studied in linearly birefringent (anisotropic) media where
phase matching, a necessary prerequisite for the efficiency
of these processes, is achieved by exploiting the linear
birefringence. For continuous tuning of the phase matching,
however, this approach introduces certain complications,
related to wave propagation in anisotropic media, the most
evident being the walk-off effect [1]. This and other
related problems can be bypassed by instead exploiting the
circular birefringence induced by an externally applied static
magnetic field, which occurs in isotropic media as well.
In such media the left- and right-circular polarization state
degeneracy is lifted and the corresponding phase velocities
differ by an amount that depends on the magnetic field
strength, and can hence be used to achieve phase matching
still preserving optical isotropy and avoiding walk-off in the
so-called Faraday configuration; this is a consequence of the
specific impact the magnetic field has on the optical properties
of the medium, and is in the linear regime also reflected in
the relation [2]

Dω = ε0(εEω + iEω × g),

between the electric field E(r, t) = Re [Eωe−iωt ] and
induction D(r, t) = Re [Dωe−iωt ], with ε being the
dielectric constant (electrical permittivity), a scalar for
isotropic media, and g the gyration vector which conveys the
influence of the magnetic field. In addition, the magnetic field

introduces new features related to the breakdown of the time-
reversal symmetry, which in the case of confined geometry,
such as in a cavity, can lead to strikingly novel behaviour
because of the concomitant onset of nonreciprocity. In
particular, this leads to the development of nonreciprocal
nonlinear optical devices with applications for unidirectional
control or shielding, such as in the case of polarization
state controlled switching [3]. Furthermore, in this case
the conservation of angular momentum of the light beams,
together with the crystalline lattice, electronic spins and
orbitals, must be inserted along with the photon energy
and momentum conservation laws, as described by the well
known Manley–Rowe relations for three-wave interactions.

2. The polarization density

Assuming quasi-monochromatic fields E(r, t) = ∑3
k=1

Re [Eωk
e−iωkt ], and keeping only lowest-order optical and

magneto-optical nonlinearities, each frequency component
obeys the wave equation

∂2Eωk

∂z2
+
ω2
k

c2
Eωk

= −ω2
kµ0Pωk

, (1)

where k = 1, 2, 3 designates the idler, signal and pump
respectively, and where the electric polarization density for
each frequency component ωk is taken as

Pωk
= ε0[χ(ee) : Eωk

+ χ(eem) : Eωk
H0

+ χ(eee) : (EE)ωk
+ χ(eeem) : (EE)ωk

H0],

where χ(ee) and χ(eee) are the first- and second-order optical
susceptibility tensors; χ(eem) and χ(eeem) are the second- and
third-order magneto-optical susceptibility tensors, governing
the Faraday effect [2] and magneto-optical parametric
generation (magnetic field induced OPG) [4,5], respectively.
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Above, the notation (EE)ωk
refers to the combination of two

electric fields that give rise to a field at angular frequency ωk ,
and all susceptibility tensors are to be taken with respect to
the particular frequency combination following them.

In order to clarify the main features imposed by the
gyrotropy, we have chosen to analyse wave propagation in
the (111)-direction of a crystal of point-symmetry class 4̄3m,
with this direction as the z-axis of the laboratory coordinate
frame (x, y, z). For this point-symmetry class, the tensors
χ(ee) and χ(eem) are isotropic (invariant under rotation of
the crystal frame relative to the laboratory frame), and the
nonzero elements of χ(eee) and χ(eeem), taken in the laboratory
frame, are listed in the appendix, tables A.1 and A.2. In
the Faraday configuration, with H0 = Hz

0 ez, we then have
rotational symmetry of the polarization density around the z-
axis, and the symmetry of the combined system, crystal plus
light, must be preserved around the direction of propagation.

By projecting the polarization density onto the circularly
polarized basis e± = (ex ± iey)/

√
2, where a plus

denotes left-circular polarization (LCP) and a minus right-
circular polarization (RCP), one obtains the LCP and RCP
components P±

ωk
= e∗

± · Pωk
of the polarization density

expressed in terms of circularly polarized electric field
components E±

ωk
= e∗

± · Eωk
as [5]

P±
ω1

= ε0[(n2
1 − 1 ± γ1)E

±
ω1

+
√

2(1 ± i)(p1 ± q1)E
∓
ω3
E±∗

ω2
],

P±
ω2

= ε0[(n2
2 − 1 ± γ2)E

±
ω2

+
√

2(1 ± i)(p2 ± q2)E
∓
ω3
E±∗

ω1
],

P±
ω3

= ε0[(n2
3 − 1 ± γ3)E

±
ω3

+
√

2(1 ± i)(p3 ± q3)E
∓
ω1
E∓

ω2
],

where we defined

n2
k = 1 + χ(ee)

xx (−ωk;ωk),

γk = iχ(eem)
xyz (−ωk;ωk, 0)Hz

0 ,

p1,2 = χ(eee)
xxx (−ω1,2;ω3,−ω2,1),

p3 = χ(eee)
xxx (−ω3;ω1, ω2),

q1,2 = −iχ(eeem)
xxxz (−ω1,2;ω3,−ω2,1, 0)Hz

0 ,

q3 = −iχ(eeem)
xxxz (−ω3;ω1, ω2, 0)Hz

0 .

3. Wave propagation

The solution for the propagating light is conveniently
expressed in terms of Stokes’ parameters [6], which for the
idler are taken as

S
(i)
0 = |E+

ω1
|2 + |E−

ω1
|2, S

(i)
1 = 2Re [E+∗

ω1
E−

ω1
],

S
(i)
3 = |E+

ω1
|2 − |E−

ω1
|2, S

(i)
2 = 2Im [E+∗

ω1
E−

ω1
].

The signal and pump are similarly described by pairwise
replacement of {(i), ω1} with {(s), ω2} and {(p), ω3},
respectively. We also define the parameters βk = ωknk/c,
αk = ωkγk/(2nkc), δk = qk/pk , ν = η1/η2, and the gain
g = [η1η2S

(p)

0 /2]1/2, where ηk = ωkpk/(nkc), and the
dimensionless propagation coordinate ζ = gz. Here βk ,
k = 1, 2, 3, are the respective regular propagation constants
of the idler, signal, and pump waves with the static magnetic
field switched off, while αk are their magnetic field induced

additional contributions, governing the circular birefringence
(Faraday rotation). The quotes δk describe the strengths of the
static magnetic field induced parametric interactions relative
to the all-optically induced ones.

For simplicity, we make a restriction to the case of optical
parametric amplification (OPA), with a zero idler present at
ζ = 0. By employing the slowly varying envelope and
nondepleted pump approximation, one then obtains solutions
to the wave equation (1) in terms of hyperbolic functions [5].
In terms of Stokes’ parameters, the solutions for the idler and
signal can be written as

S
(i)
0 (ζ )/S

(s)
0 (0) = (ν/2)[f +

1 (ζ ) + f −
1 (ζ )]

+ (ν/2)[f +
1 (ζ ) − f −

1 (ζ )]εs(0), (2a)

S
(i)
1 (ζ )/S

(i)
0 (ζ ) = [1 − ε2

i (ζ )]
1/2 cos[ϑi(ζ )], (2b)

S
(i)
2 (ζ )/S

(i)
0 (ζ ) = [1 − ε2

i (ζ )]
1/2 sin[ϑi(ζ )], (2c)

εi(ζ ) = [f +
1 (ζ ) − f −

1 (ζ )] + [f +
1 (ζ ) + f −

1 (ζ )]εs(0)

[f +
1 (ζ ) + f −

1 (ζ )] + [f +
1 (ζ ) − f −

1 (ζ )]εs(0)
, (2d)

and

S
(s)
0 (ζ )/S

(s)
0 (0) = [f +

2 (ζ ) + f −
2 (ζ )]/2

+ [f +
2 (ζ ) − f −

2 (ζ )]εs(0)/2, (3a)

S
(s)
1 (ζ )/S

(s)
0 (ζ ) = [1 − ε2

s (ζ )]
1/2 cos[ϑs(ζ )], (3b)

S
(s)
2 (ζ )/S

(s)
0 (ζ ) = [1 − ε2

s (ζ )]
1/2 sin[ϑs(ζ )], (3c)

εs(ζ ) = [f +
2 (ζ ) − f −

2 (ζ )] + [f +
2 (ζ ) + f −

2 (ζ )]εs(0)

[f +
2 (ζ ) + f −

2 (ζ )] + [f +
2 (ζ ) − f −

2 (ζ )]εs(0)
, (3d)

respectively, where εk(ζ ) = S
(k)
3 (ζ )/S

(k)
0 (ζ ), k = i, s, p, are

the normalized ellipticities of the polarization states of the
idler, signal and pump, respectively, and where we defined

f ±
1 (ζ ) = (1 ± δ1)

2[1 ∓ εp(0)]
sinh2[(ξ 2

± − φ2
±)

1/2ζ ]

(ξ 2± − φ2±)
,

f ±
2 (ζ ) = cosh2[(ξ 2

± − φ2
±)

1/2ζ ] + φ2
±

sinh2[(ξ 2
±−φ2

±)
1/2ζ ]

(ξ 2±−φ2±)
,

ξ 2
± = (1 ± δ1)(1 ± δ2)[1 ∓ εp(0)],

φ± = (1 ∓ )α/)β)φ,

ϑi = g−1(α3 + α2 − α1)ζ − ϑs(0) − π/2,

ϑs = ϑs(0) + g−1(α3 − α2 + α1)ζ

+ arctan

(
φ−

(ξ 2− − φ2−)1/2
tanh[(ξ 2

− − φ2
−)

1/2ζ ]

)

− arctan

(
φ+

(ξ 2
+ − φ2

+)
1/2

tanh[(ξ 2
+ − φ2

+)
1/2ζ ]

)
,

with )β = β3 −β2 −β1, )α = α1 +α2 +α3; φ = )β/(2g) is
the normalized phase-mismatch in the limit of zero-applied
static magnetic field, and the quote )α/)β has the role
of a differential phase mismatch between LCP and RCP,
originating from the Faraday effect. In deriving equations (2)
and (3), without loss of generality, we assumed δ2

k < 1,
k = 1, 2, 3. The orientation of the polarization ellipses
of the fields are determined by ϑi and ϑs , being twice the
angles between the main axes of the polarization ellipses of
idler and signal relative to the x-axis of the laboratory frame,
where ϑs(0) = arg[E+

ω2
(0)] − arg[E−

ω2
(0)] is determined by

the orientation of the polarization ellipse of the input signal.
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Figure 1. Conversion efficiency S
(i)

0 (ζ )/(νS
(s)

0 (0)) versus
differential phase mismatch )α/)β, for a linearly polarized input
pump and signal, εs(0) = εp(0) = 0, in the case with negligible
magneto-optically induced parametric generation. Employed
parameter values are ζ = 1, δ1 = δ2 = 0, and (A) φ = 0,
(B) φ = 0.8, (C) φ = 1.6, (D) φ = 2.4, (E) φ = 8.0.

4. Discussion

From equation (2a), one obtains the selection rule that with
a RCP (LCP) pump, the intensity of the idler will be nonzero
only for a signal having a nonzero LCP (RCP) component.
The generated idler will then be in a pure LCP (RCP) state,
and phase matching is obtained for )α = )β ()α = −)β).
This selection rule is a direct consequence of the fact that for
each photon carrying angular momentum +h̄ (LCP) added to
the signal wave (ω2), one photon with angular momentum
+h̄ (LCP) is added to the idler wave (ω1), and one photon
with angular momentum −h̄ (RCP) is removed from the
pump wave (ω3). The change of field angular momentum
of 3h̄ is compensated by a change of angular momentum
of the crystal lattice of the medium, i.e. as a steady state
torque on the crystal†. A similar scheme applies to the
case of second-harmonic generation with circularly polarized
fields [8], where two circularly polarized fundamental quanta
combine to a second-harmonic quantum with opposite sense
of circular polarization.

For a linearly polarized pump and signal, the solutions
for S

(i)
0 and S

(s)
0 become symmetric with respect to the

magnetic field, while S
(i)
3 and S

(s)
3 become antisymmetric.

The nonlinear source terms related to magnetic field induced
OPG, described by the quotes δk , are generally small
compared with the all-optical ones in optically nonresonant
frequency regimes. For simplicity, these terms can therefore
be neglected for most practical purposes without any greater
loss of generality.

In figure 1 the signal-to-idler conversion efficiency for a
linearly polarized pump and signal is shown as a function
of applied static magnetic field, expressed in terms of
differential phase mismatch )α/)β, for certain values of
φ, the phase mismatch in the limit of zero static magnetic

† For discussions on conservation of photon angular momentum in
dielectrica, see [7].
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Figure 2. (a) Ellipticity εi(ζ ) = S
(i)

3 (ζ )/S
(i)

0 (ζ ) of idler versus
applied magnetic field normalized in terms of differential phase
mismatch )α/)β, and (b) Poincaré map of transmitted idler
polarization state (s

(i)

1 , s
(i)

2 , s
(i)

3 ), s(i)k = S
(i)

k (ζ )/S
(i)

0 (ζ ), as function
of applied magnetic field in interval corresponding to
−1 � )α/)β � 1, for a linearly polarized input pump (RCP) and
signal (LCP), S(p)

3 (0) = S
(s)

3 (0) = 0, in the case with negligible
magneto-optically induced parametric generation, δ1 = δ2 = 0.
Employed parameter values are ζ = 1 and φ = 1.6.

field. For small values of φ, the maximum signal-to-
idler conversion efficiency is obtained for zero magnetic
field. This corresponds to cases where the classical photon
momentum conservation requirement β1 + β2 = β3 holds
to a good degree. However, as φ is increased, the point
for maximum conversion efficiency bifurcates into two,
corresponding to phase matching for each of the circularly
polarized eigenmodes. For high values of φ, one may always
obtain phase matching in the vicinity of )α/)β = ±1 for
either set (E±

ω1
, E±

ω2
, E∓

ω3
) of the circularly polarized fields,

though for a linearly polarized pump essentially one half of
the pump energy is lost in the mismatched mode since phase
matching cannot be simultaneously achieved for both LCP
and RCP.

Typical dependences of polarization states on magnetic
field, corresponding to the curves in figure 1, are shown in
figure 2. In figure 2(a), the ellipticity of the idler wave is
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shown as a function of applied magnetic field in an interval
corresponding to −1 � )α/)β � 1.

The overall behaviour of the polarization state of the idler
is conveniently displayed by mapping the trajectory described
by the normalized reduced Stokes vector (S(i)

1 , S
(i)
2 , S

(i)
3 )/S

(i)
0

which, since S2
0 = S2

1 + S2
2 + S2

3 for monochromatic light,
is confined to the unitary Poincaré sphere. In figure 2(b),
the Poincaré map corresponding to figure 2(a) is shown,
for input signal being linearly polarized along the y-axis
of the laboratory frame, ϑs(0) = π . Figure 2(b) shows
that for a zero magnetic field the generated idler will be
linearly polarized as well. As the magnetic field is varied,
the trajectory of the Stokes vector will describe helix-like
paths towards either the LCP or RCP poles of the Poincaré
sphere as )α/)β approach the phase matched special cases
of )α/)β = ±1. The pitch of the described helix will
increase with decreasing ∂ϑi/∂ζ .

Allowing for a depleted pump, the Manley–Rowe
relations, obtained from ∂W/∂t = ( 1

2 )
∑

k ωkIm [E∗
ωk

·Pωk
],

reflecting the energy exchange rate between the beams,
become

(∂|E±
ω1

|2/∂ζ )
η1(1 ± δ1)

= (∂|E±
ω2

|2/∂ζ )
η2(1 ± δ2)

= − (∂|E∓
ω3

|2/∂ζ )
η3(1 ∓ δ3)

,

being satisfied separately for each set of circularly polarized
field components.

5. Summary

In conclusion, we have presented the nonzero elements of
the second-order optical and third-order magneto-optical
susceptibility tensors, governing optical and magneto-optical
parametric generation. The evolution of the signal and
generated idler waves were presented in terms of Stokes’
parameters, conveniently used for interpretating conversion
efficiencies as well as polarization state evolutions. We
have discussed the selection rules for the parametric process
in terms of transfer of photon angular momentum to the
medium. Finally, the general Manley–Rowe relations for this
parametric process were presented, reflecting photon number
conservation.

The main advantage with the proposed phase-matching
technique is that continuous tuning of the phase-matching
condition can be obtained in a fixed geometry, in the Faraday
configuration, eliminating any walk-off effects. In addition,
the magnetic field can be used as a controlling parameter
for the polarization states of the idler and signal. For
linearly polarized input pump and signal, the sign reversal
of the applied magnetic field is shown to cause the energy
transfer from the pump to signal and idler to switch from one
circularly polarized mode to the orthogonally polarized one.

Appendix

Tables of nonzero elements of the second-order optical
and third-order magneto-optical susceptibilities for point-

Table A.1. Nonzero elements of the second-order optical
susceptibility χ(eee) for point-symmetry class 4̄3m, in the
laboratory coordinate frame (x, y, z), with the z-axis in the
direction of the crystal (111)-direction.

Nonzero elementsa of χ(eee)

ijk

χ(eee)
xxx = χ(eee)

yyy = χ(eee)
zzz /2 = a

χ(eee)
xxy = χ(eee)

yyx = χ(eee)
xyx = χ(eee)

yxy = χ(eee)
xyy = χ(eee)

yxx = −a

χ(eee)
xxz = χ(eee)

zxx = χ(eee)
yyz = χ(eee)

zyy = χ(eee)
xzx = χ(eee)

yzy = −a

a = χ
(eee)

XYZ/
√

3

a Calculated using [1, table A3.2].

Table A.2. Nonzero elements of the third-order magneto-optical
susceptibility χ(eeem) for point-symmetry class 4̄3m, in the
laboratory coordinate frame (x, y, z), with the z-axis in the
direction of the crystal (111)-direction.

Nonzero elementsa of χ(eeem)

ijkl

χ (eeem)
yxxx = χ(eeem)

zyyy = −χ(eeem)
xyyy = −χ(eeem)

zxxx

= χ(eeem)
zyyx = χ(eeem)

zyxy = −χ(eeem)
zxxy = −χ(eeem)

zxyx

= χ(eeem)
zxyy = −χ(eeem)

zyxx = a + b + c,
χ(eeem)
yyyx = χ(eeem)

xxxz = −χ(eeem)
xxxy = −χ(eeem)

yyyz

= χ(eeem)
xxyz = χ(eeem)

xyxz = −χ(eeem)
yyxz = −χ(eeem)

yxyz

= χ(eeem)
yxxz = −χ(eeem)

xyyz = a + b − c,
χ(eeem)
yyxy = χ(eeem)

xxzx = −χ(eeem)
xxyx = −χ(eeem)

yyzy

= χ(eeem)
xxzy = χ(eeem)

xyzx = −χ(eeem)
yyzx = −χ(eeem)

yxzy

= χ(eeem)
yxzx = −χ(eeem)

xyzy = a − b + c,
χ(eeem)
xyxx = χ(eeem)

yzyy = −χ(eeem)
yxyy = −χ(eeem)

xzxx

= χ(eeem)
yzyx = χ(eeem)

yzxy = −χ(eeem)
xzxy = −χ(eeem)

xzyx

= χ(eeem)
xzyy = −χ(eeem)

yzxx = a − b − c,
χ(eeem)
xzzy = −χ(eeem)

yzzx = 2(a + b), χ(eeem)
zxyz = −χ(eeem)

zyxz = 2(a − b),
χ(eeem)
xzyz = −χ(eeem)

yzxz = 2(a + c), χ(eeem)
zxzy = −χ(eeem)

zyzx = 2(a − c),
χ(eeem)
xyzz = −χ(eeem)

yxzz = 2(b + c), χ(eeem)
zzxy = −χ(eeem)

zzyx = 2(b − c),
a = χ

(eeem)

XXYY /(2
√

3), b = χ
(eeem)

XYXY /(2
√

3), c = χ
(eeem)

XYYX /(2
√

3)

a Calculated using [4, table 2].

symmetry class 4̄3m, taken in the laboratory coordinate
frame (x, y, z), with the z-axis in the direction of the crystal
(111)-direction. In the tables lower-case (capital) lettering in
subscripts denotes tensor components taken in the laboratory
(crystal) coordinate system.
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