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We analyze optical parametric interactions in nonlinear magneto-optical media simul-
taneously possessing a second-order nonlinearity and a spatial modulation of its linear
optical properties. An analytic solution for the conversion efficiency of energy transfer
from an optical pump to a signal wave is presented, and we discuss the possibility of
tunability that is added to the parametric process.
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1. Introduction

Three-wave coherent interactions of the class w3 — w; + wy with all energy
exchanges occurring between the three field components without loss to the mate-
rial medium, have been almost exclusively analyzed with linearly polarized light
fields, in linearly birefringent (anisotropic) crystals where phase matching can be
achieved by exploiting the linear birefringence. An alternative approach is to exploit
the circular birefringence, natural or artificially induced, to achieve phase matching.
This has already been discussed in the case of second and third harmonic genera-
tion in the case of optically active crystals':? (natural optical activity) for linearly
polarized light, and has further been analyzed in artificially gyrotropic (magneto-
optic) media,>®
have been derived, relating to the spin selection rules of single-photon paramet-

in which selection rules for circularly polarized field components

ric processes. The interest of such configurations is ultimately conditioned by the
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possibility of compensating the dispersion mismatch with the circular birefringence,
induced through the Faraday effect.

Meanwhile, since the early days of nonlinear optics, a parallel track has been
the proposition to employ Bragg gratings as the means for achieving phase match-
ing in nonlinear processes, as earlier suggested by Bloembergen and Sievers® for
parametric down-conversion and Brillouin scattering, employing periodic laminar
structures. For the special case of second-harmonic generation, Tang and Bey” inves-
tigated the possibility of employing sinusoidal refractive index gratings, long before
the invention of the today commonly employed fiber Bragg grating. A more general-
ized analysis of phase-matching of three-wave interactions in third-order nonlinear
processes in gratings was performed by Yariv and Yeh.® Phase matching of second
harmonic generation using gratings with a phase discontinuity for light localization
has also been analyzed.”

Recently, the use of nonlinear fiber Bragg gratings for the simultaneous compres-
sion and amplification of optical pulses has also been suggested,'® in a technique
where cross-phase modulation in the presence of optical Kerr effect together with
the dispersion introduced by the grating causes parametric amplification of weak
optical signal pulses, meanwhile automatically achieving an efficient phase matching
scheme.

In all these cases of spatially modulated media, exclusively all-optical interac-
tions have been taken into account in the phase matching schemes, and it is the aim
of the present work to introduce the features of tunability and polarization state
control added by also including magneto-optical interactions.

The starting point of the analysis is the vectorial electromagnetic wave equation

as derived from Maxwell’s equations'!
1 0%E(r,t) 0?P(r,t)
VXVXE(r,t)—FC—QT:—MOT, (1)

in which E(r,t) and P(r,t) are the real-valued electromagnetic field and polariza-
tion density vectors, respectively. Throughout the analysis of three-wave interac-
tions carried out in the present work, we for the complex-valued envelopes of the
electric field adopt the convention

3
E(r,t) = Z Re[E.,, exp(—iwmt)],
m=1

where w1, ws, and ws, denote the angular frequencies of the signal, idler, and pump
waves, respectively, and similarly for the envelope of the electric polarization density

3
P(r,t) = Z Re[P.,, exp(—iwmt)],

m=1

the latter having its field envelope comprising the linear optical part

P{) = eo(x*E.,, +x“"E.,,Bo), (2)

Wm,
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and a nonlinear part

P(NL) = €O(Xeeeij Eum + XeeemEWj EW’C BO)’ (3)

W

where the field product E,,,E,,, refers to the particular combination of two electrical
field components giving rise to a a field at angular frequency w,, = w; + wy, taking
into account the property Ef, = E_,; of conjugated fields.

In the linear part of the constitutive relation, x°° is the linear optical suscepti-
bility tensor of the medium and x*“™ the linear magneto-optical susceptibility. In
isotropic media these tensors in Eq. (2) evaluate to the well-known linear source
terms 35 Eo,, and X537 E,,, X B respectively, the latter governing the artificially
induced gyrotropy (Faraday effect). Similarly, in the nonlinear part of the consti-
tutive relation, x ¢ is the nonlinear, second-order optical susceptibility tensor of
the medium and x®*°™ its magneto-optical modification in the presence of static
magnetic field.

In grating-assisted parametric interactions such as those considered here, the
linear optical and magneto-optical properties are spatially modulated, creating an
effective stop band in the spectrum. At the edges of this stop band, the group
velocity dispersion as experienced by the traveling light waves, or equivalently their
energy velocity dispersion,'?!3 is considerably enhanced, and by employing this
artificially introduced dispersion for any of the frequency components of the three-
wave interaction, an effective phase-matching scheme can be obtained also in media
which otherwise are poorly fit for the regular phase matching techniques based on
material dispersion and anisotropies.

The present work is divided into sections as follows: In Sec. 2, the fundamental
linear and nonlinear optical properties of the magneto-optical medium is analyzed,
with the constitutive relations in Sec. 3 applied to the analysis of parametric pro-
cesses and wave propagation in a waveguiding structure. In Sec. 4, the linear band
structure and dispersion characteristics of the magneto-optical grating is analyzed
from the basis of the Bloch theory. These characteristics are essential for the fur-
ther understanding of the phase matching requirements and tunability issues as
discussed later on in Secs. 5 and 6, in which the wave equation is solved under the
non-depleted pump approximation, providing an analytic solution to the conversion
efficiency of the parametric process. In Sec. 7 the obtained results are discussed
and illustrated with graphs of the signal amplification as a function of the applied
static magnetic field for several configurations, with the conclusions summarized
in Sec. 8.

2. The Medium of Interaction

For the present analysis we will assume a medium which is isotropic in its linear
constitutive relations, meanwhile possessing a second-order nonlinearity support-
ing optical parametric interactions. The candidates for such media must, out of
necessity, belong to any of the cubic point-symmetry groups 432, 43m, or 23.'4
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The remaining cubic point-symmetry groups m3 and m3m both possess inversion
symmetry and do hence prohibit any second-order optical parametric interactions.
For the sake of simplicity, we choose for the following analysis a medium belong-
ing to point-symmetry group 43m, or zinc-blende structure, in which the linear
optical and magneto-optical properties are isotropic, and in order to further sim-
plify the analysis we also choose a geometry in which the wave propagation occur
in the (111)-direction of the crystalline lattice, this direction taken as the z-axis of
the Cartesian coordinate system of the laboratory reference frame.

The elements of the susceptibility tensors evaluated in the laboratory reference

€e¢ obtained in terms of

frame (z,y,2) are for the rank-three all-optical tensor x
the elements in the crystal frame (X,Y, Z) from the transformation rule for polar

tensors

Xisk = Rir Rjy Rk X775k » (4)
and similarly for the rank-four magneto-optical tensor x“°“* from the transforma-
tion rule for axial tensors

where R is the rotational matrix composed of the direction cosines between the
Cartesian coordinate axes of the crystal and laboratory reference frames. The ele-
ments of the second-order susceptibility tensors expressed in the laboratory refer-
ence frame are listed in Tables 1 and 2. For this choice of orientation of the z-axis
of the laboratory frame, the linear and nonlinear optical properties of the medium
are all invariant under rotation of the medium around the axis of wave propagation,
hence eliminating any nonlinearly induced birefringence or cross-phase modulation
between linearly polarized field components.

One well-known magneto-optical material belonging to the zinc-blende point-
symmetry group 43m is the semi-magnetic semiconductor Cd; _,Mn,Te, which has
been proven to also possess high optical nonlinearities.'®'® The chosen configuration
also has the advantage that it connects to the earlier suggestions of using composite

Table 1. Nonzero elements of the second-order optical susceptibility
tensor x°°° for point symmetry group 43m, in the laboratory coor-
dinate frame (z,y,z), with the z axis in the direction of the crystal
(111)-direction. Capital indices of tensor elements relate to the Carte-
sian coordinate axes intrinsic of the crystal reference frame.

a eee
Nonzero elements® of X5ik

eee _ ,eee __ ,eee —
Xexz = nyy - Xzzz/2 =a

eee __ ,eee __ ,eee __ ,eee __ ,eee __ ,eee __
Xza:y - nya: - Xa:yz - Xyzy - Xa:yy - Xya?z =—a

eee _ ,eee _ ,eee __ ,eee __ ,eee __ ,eee __
Xexz = Xzze — nyz - Xzyy = Xzzz — Xyzy =—a

a=x¥Y /32

aCalculated from Ref. 14, Table A3.2.
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Table 2. Nonzero elements of the third-order magneto-optical suscep-
tibility tensor x©®™ for point symmetry group 43m, in the laboratory
coordinate frame (z,y, z), with the z axis in the direction of the crystal
(111)-direction. Capital indices of tensor elements relate to the Cartesian
coordinate axes intrinsic of the crystal reference frame.

b eeem
Nonzero elements® of X5ih1

eeem _ ,eeem __ eceem __ eeem __ ,eeem _ ,eeem
Xy.rrz:.r - Xzyyy - 7X.ryyy = Xzzzz — Xzyya: - Xzyrz:y
— eeem __ eeem __ ., eeem __ eeem __
- 7Xza:zy - 7Xzzya: - Xza:yy - 7Xzya:z =a+b+ C,
eeem __ ., eeem __ eeem __ eeem __ ,eeem __ ., eeem
Xyyyzr = Xezzz = ~Xzzzy — Xyyyz — Xexyz — Xayzz
— eeem __ eeem _ ,eeem __ eeem __
- 7ny.rz - 7Xy.ryz - Xyrz:.rz - 7X.ryyz =a+b— C,
eeem _ ,eeem _ eeem __ eeem _ ,eeem _ ., eeem
nya:y = Xzzzax — _Xa:zya: - _nyzy - Xa:zzy - Xa:yzz
— eceem __ eeem __ ,eeem __ eceem __
= Xyyzz — Xyzzy — Xyzza —  Xaeyzy — ¢ — b+ C,
eeem _ ,eeem __ eeem __ eeem __ ,eeem _ ,eeem
Xa:yza: - Xyzyy - _Xya:yy = “Xzzzz = Xyzya: - Xyzzy
— eeem __ eeem _ ,eeem __ eeem __
= Xzzzy — Xzzyz = Xezyy —  Xyzzz — @ b—c,
eeem __ eeem __ eeem __ eeem __
X.rzzy - 7Xyzz.'z - 2(0’ + b)7 Xza:yz - 7Xzy.7:z - 2(0‘ - b)7
eeem __ eeem __ eeem __ eeem __
Xa:zyz - 7Xyza:z - 2(0’ + C)7 Xzzzy - 7Xzyza: - 2(0‘ - C)7
eeem _ eeem _ eeem __ eeem _
Xzyzz = “Xyzzz = 2(b + 6)7 Xzzey = ~Xzzyz = 2(b - C)v

a =X /(2V3), b= xSy /(2V3), ¢ = XS5 /(2V3)

bCalculated from Ref. 18, Table II.

layered structures of GaP and GaAs for the phase matching, in a geometry in
which the layers were grown epitaxially with their (111)-axes normal to the layer
surfaces.®

To support an all-optical second-order nonlinearity, or equivalently a second-
order electric dipolar contribution to the electric polarization density, the medium
must as a basic requirement not possess inversion symmetry.!” This follows from the

transformation rule (4) of polar tensors, which if the medium under investigation

is invariant under the inversion transformation R;; = —d;; gives the well-known
identity x57; = 0. This result is easily generalized to yield the fact that if the

inversion operation is a symmetry operation of the medium, then all tensor elements
of any all-optical source term of the polarization density which involves an even
number of electric field components must identically vanish.

From this fact, one could easily be misled to believe that the magneto-
optical nonlinear susceptibility x§75" could support a second-order nonlinear-
ity, as those source terms involve the products of three fields, two electric and
one magnetic one. However, from the transformation rule (5) of axial tensors,
one directly finds that invariance of the second-order magneto-optical proper-
ties under any inversion operation with det(R) = —1 still requires the tensor
elements x;75" to be identically zero. This result is, similar to the all-optical
one, easily generalized to yield the fact that if the inversion operation is a
symmetry operation of the medium, then all tensor elements of any magneto-

optical source term of the polarization density which involves an even number
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of electric fields and an odd number of magnetic fields must identically vanish
as well.

It should be emphasized here that we in the present terminology use the term
isotropic to denote a material property which is invariant under any proper rotation,
with det(R) = 1, which does not automatically include inversion symmetry as an
intrinsic property. For example, the chosen point-symmetry group 43m is isotropic
in its linear optical properties, being a non-birefringent medium in the absence of
static magnetic fields, while it still does not possess inversion symmetry, hence still
possessing a second-order optical nonlinearity.

3. Wave Propagation

In many cases the nonlinearity and its associated inter-frequency wave interaction
can be comparatively weak, and so it becomes important to keep the optical wave
confined to the active region so as to ensure that the optical intensity is kept at
a sufficiently high level. One solution in this respect is to employ wave-guiding
structures while also maintaining a spatial modulation of the optical properties
of the medium in the direction of wave propagation, such as for example in fiber
Bragg gratings.!® One advantage with this solution is also that it provides a means
to keep the transverse spatial overlap of the waves in the interaction fixed, thus
considerably simplifying the setup in applications. For the sake of self-consistency
of the following nonlinear analysis, the separation of the radial and longitudinal
dependence of the optical waves will now be outlined.

By expanding the spatial differentiation as appearing in the general wave
propagation described by Eq. (1), and by furthermore assuming that the spatial
variation of the optical properties of the medium is weak enough to allow the
assumption

v(v : EWNL) < VQEW'm’

the wave equation governing the spatial evolution of the complex-valued electric
field components becomes

2
w
V2B, + 20+ X + X" Bo|Eu,, = —powi, POV, (6)

where, in the Cartesian coordinate system of the laboratory reference frame, § =
e;e;d;; is the rank-two unitary tensor, x°° = e;e;X{;(r,wn,) is the rank-two tensor
governing the linear optical polarization density and x°™ = eiejekxfjg(r,wm) is
the rank-three tensor governing the linear magneto-optical polarization density,2’
the latter two being spatially dependent quantities to be evaluated at respective

angular frequency w,,. For the present case of a medium having its linear optical
properties isotropic, these tensors take the simple forms X§7 = d;;x55 and xjj;" =
€ijkXays» With 0;; and €5 being the Kronecker delta and Levi-Civitd permutation

tensors,21 respectively.



Optical Parametric Interactions in Distributed Magneto-Optical Bragg Gratings 119

The direction of the externally applied magnetic field is taken as collinear with
the direction of wave propagation, with By = Bie, in the Faraday configuration.??
The medium in which the wave propagation takes place is at angular frequency wy,

possessing a linear refractive index n2 (z,y,2) = 1 + X.(~wm; wm) and magneto-

optical gyration coefficient vy, (7,y,2) = ixgy: (—wm;wm,0)B§ spatially modu-
lated as
2 _ =2
nm(x,yjz) " cos(Kz +9) +al, f(x,y), (7a)
Nm
'W{M = by, cos(Kz+9) + b, f(z,y), (7h)

where n,,, and 7,, are the respective bias indices and gyration coefficients, as inher-
ent of the bulk medium well outside the waveguiding core, and where K is the
magnitude of the grating vector, related to the grating period A as K = 27 /A.
Although intentionally introduced defects or other perturbations in magneto-optical
gratings have been shown to provide a strong polarization state selectivity of the
light localization, in a linear?3
present case focus attention on a grating with homogeneously modulated phase,
with 1 being a real-valued constant. The transverse real-valued distribution function
f(z,y), describing the waveguiding cross-section profile, is taken to have its maxi-
mum value of f(0,0) = 1 at the centre of the core, outside of which it rapidly drops
towards zero. For simplicity, the nonlinear optical and nonlinear magneto-optical

as well as nonlinear?* optical regime, we for the

properties at the respective angular frequencies are assumed to be homogeneous
and non-modulated.

Each frequency component of the complex envelope of the electric field is
expressed in the circularly polarized basis e+ = (e, £ iey) /22 and separated
into a factorized form as

E., = e F}(z,y)ALl (z) exp(iBh2) + e_F,, (z,y) AL, (2) exp(if3,,2)
+ e Fy (2, 9) A (2) exp(—if,2) + €5 Ff (z,y) Ay (2) exp(—ifBh2),
(8)

where a =+ in the superscripts of the forward or backward traveling field envelopes
AfE or AP* denotes left /right circular polarization state, taking into account also
the direction of propagation. In Eq. (8), 8 are the respective linear propagation
coefficients of the waveguided modes, to be determined later on from the trans-
verse profile of the waveguide by the modal eigenvalue equation. In this separation,
the envelopes A'* and AP* have the physical dimension of the electric field, or
V/m in SI units, while the transverse mode profiles F = (z,y) are dimensionless and
normalized to yield

[ itwpdedy = [[ £y away =1,
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with the integration to be performed over the entire transverse extent of the modes.
The form (8) of the separation of the transverse and longitudinal spatial dependence
of the electromagnetic field, with identical mode profiles and propagation coeffi-
cients assumed for counter-propagating components of opposite circular polariza-
tion state, is justified by the observation that the backward traveling components
experience an effective change of sign of the applied magnetic field, hence switching
roles of the circular polarization states, as compared to the forward traveling com-
ponents. In this form, the variable separation in Eq. (8) assumes a constant phase
in the transverse zy-plane at all longitudinal positions; this hence excludes the pos-
sibility of analysis of radiation modes, limiting the discussion to the wave-guided
modes.

As the factorized form (8) of the electromagnetic field is inserted into the wave
equation (6), furthermore using the linear optical properties of the medium as in
Egs. (7) and applying the slowly varying envelope approximation! for the envelopes
in the forward and backward directions of propagation, one obtains a coupled sys-
tem of differential equations for the forward and backward traveling components.
This system is of considerable algebraic complexity, and in order to simplify the
following analysis we now apply the assumption that the pump (w3) and idler (ws)
beams are out of Bragg resonance with the grating, as schematically illustrated in
Fig. 1. Under this assumption, the backward traveling components of the pump
and idler wave both become zero, and the simplified coupled system for the field
envelopes becomes

L0 o
AﬁiV%Fli + FljE Zzﬁli% + (wl/c)2 (n% 4 71) — f:Q Aﬁi
+ (wi/e)?(71/2) (a1 % by) exp(—2iasz 4 i9) FEAPT
+ (wi/e)* (a) £ b)) f(z, y) FEALE
+212(1 £ ) (w1 /e)? (X%, F ixSSmBE ) Fy Fyf AST AR exp(ifez) =0,  (9a)

rxrx TXTTZ

wl —d e — e === — — —_—————— —_————i -
. w1
— Bo w, < (signal) —
—d————————— = —————— —_—————t -
w2 . w2
— w2 —— (idler) —
w3 w3
— s w3 — (pump) —
_JRNSEN S IEe WSS 4 1 1 |1
) z
0 L

Fig. 1. Schematic figure of the setup of the singly resonant parametric process in a nonlinear
magneto-optical Bragg grating in the Faraday configuration, in which the static magnetic field Bg
is directed along the axis of wave propagation. Of the three interacting waves, only the signal is
close to resonance of the Bragg grating, causing the parametric interaction to occur only in the
forward direction of propagation.
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oy 0 o, -
AFVRFE = |20 — (oo (i £ 3) + 552 417

+ (w1/¢)?(1/2) (a1 + by) exp(2iarz — i) FE AT
+ (wi/e)*n () £b7) f (2, ) FE AT = 0, (9b)

i o -
AFVEF; + Fy {21535 + (w2/0)* (5 £ 72) — ;2} ALE

+(w2/e)* Rz (ay £ by) f (2, y) F5 Ay*
+ 2121 £ 0) (w2 /o) (X35 F XSS B6) B FiPAFT AT exp(ifisz) =0, (90)

oy 0 o, -
AEEVRES o+ B (2005 31+ (w0 ) — 552 a5

+ (ws/e)* g (ay £ by) f (2, ) F5 A5F
+ 212 (L £ i) (ws /) (oo F XSt BE) YT By ATT AT exp(—iflz2) =0, (9d)

xrxrxrz

in which Vp = (8/0x,0/dy) is the transverse part of the nabla operator, #2, &
are the squared effective bias bulk refractive indices for the left/right circularly
polarized modes,

ar =B — K/2 (10)

are the left /right circularly polarized signal wave vector detunings from the Bragg
resonance in reflection, and

Be = 0F — By — b7 (11)

are the corresponding phase mismatch parameters between the idler, signal and
pump beams. In Egs. (9) it is to be implicitly understood that the nonlinear optical
and magneto-optical susceptibilities x5, and x5omns are to be evaluated according to
the context of the frequencies of the field envelopes, counting the angular frequencies
of complex conjugated fields as negative.

The system (9) is generally not separable into its transverse and longitudinally
dependent parts, due to their coupling in the presence of nonlinear terms. However,
by neglecting the nonlinear optical modification to the transverse mode profile,
hence relying on that the profile to a good approximation can be determined from
the linear optical properties of the waveguide in the transverse plane (z,y), the
system separates into a transverse part

2
Vi (52, i (£ ) () — 52| =0, (12)

for m =1, 2,3, and a longitudinal part

Af:t

88; _ /{j:Alij exp(—2ia:|:z) - in:AgiAg:t* exp(iﬂiz) =0, (13a)
APF

oA ke ATE exp(2iaLz) =0, (13h)

0z
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DAE

0 iCy ALF AT exp(ifez) = 0, (13c)
045" iCF AT ADF j =0 13d
Cr U3 Ay Ay exp(—if+z) = 0, ( )

where the effective linear coupling coefficient experienced by the signal wave due
to the periodic spatial modulation of the grating was defined as
K 7 w%le
+ ==
4c23E

In the following, the subscripts of a; and by are dropped as no ambiguity is present
in their meaning for the singly resonant case. In Egs. (13), the introduced nonlinear
coefficients are defined as*

(a1 & b1) exp(—i09). (14)

e QDR e o coompe .
CF = iagt (G5 ¥ 0GRS | | BEFE dody
+ (1ii)w% eee . eceem bz Tt
C5' = S (i F OGER3) | | FTFY dady,
+_ (L£d)wd

3 = W(Xﬁz ?iXZZQEBS) // FPFyf dz dy,
in which the mode profiles as calculated from Eq. (12) were incorporated in terms
of overlap integrals over the spatial profiles. In Eq. (14), the initial reference phase
¢ of the grating can be chosen arbitrarily, thus allowing for the linear coupling coef-
ficients k4 to both simultaneously be chosen as real-valued quantities in loss-less
media. The tensor elements x5, govern the all-optical, electric dipolar contribu-
tion to the parametric interaction, while x5oo govern the small but non-negligible
magneto-optically induced contribution.

Notice that in cases in which the active region of the core also defines the region
of where the magneto-optical interaction takes place, that is to say if b, # 0, the
effective refractive index contrast between the core and cladding will be experiencing
an opposite shift for orthogonal circular polarization states. This will lead to one
circular polarization state being more strongly guided than the other, with their
roles interchanged whenever the direction of the static magnetic field is switched.
This possibility is, in the present analysis, included by allowing for the spatial mode
profiles of the orthogonal circular polarization states to have different transverse
distribution functions F (z,y) and F_(z,y).

The separation of the transverse and longitudinal dependence of the optical wave
essentially limits the validity of the present analysis to the level of the weak guidance
approximation,?® which however still makes the model applicable to a large class of
single-mode structures. Another benefit with this level of approximation is that we
are in position to develop an analytical theory of the wave propagation, focusing
on the nonlinear aspect of propagation rather than the waveguiding properties.
For more complicated waveguiding geometries, or for large contrast in refractive
indices between the core and surrounding cladding, usually numerical models for
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the wave propagation need to be employed.2® It is important here to note that in
forming the system given by Eqs. (13), the non-resonant terms of the idler and pump
are assumed to be of angular frequencies which do not coincide with higher order
resonances of the grating, that is to say, their respective propagation coefficients
B3 and B must not coincide with integer multiples of 7/A.

Within the scope of validity of the approximations leading to the separated form
of Egs. (12) and (13) of the field envelopes, the propagation coefficients 3 are fully
determined by the two-dimensional partial differential equation (13). Naturally,
the explicit form of the frequency dependence of these coefficients depend on the
transverse distribution function f(x,y), which in the present work is taken as a
generic function, as the focus here is on the wave propagation characteristics. For
a detailed analysis of the explicit forms of the propagation coefficients for various
profiles f(x,y), we refer to Refs. 25-27.

4. Linear Band Structure of Magneto-Optical Gratings

At the heart of the optical parametric process described by Eqs. (13) lies the phase
matching, which depends not only on any modifications of the wave propagation as
imposed by the waveguiding structure, but also on the magneto-optical properties
of the medium and in particular the introduction of non-reciprocity,???® which
effectively distinguishes between parametric processes in the forward and backward
directions relative to the applied static magnetic field.

In some cases, the change of the bulk properties by inclusion of the Faraday
effect can be sufficient to provide an efficient phase matching scheme;®> however,
whenever such schemes cannot fulfill the phase matching criterion, operation at the
edge of the optical band gap of a periodic structure can be employed instead.® ®
The feature of also including a magneto-optical effect in these structures can be
appreciated as one considers their linear behavior as a function of the applied
magnetic field strength.

The band structure of magneto-optical gratings can in fact be discussed quali-
tatively in a linear optical domain without having to specify the exact longitudinal
profile of the periodic medium, as will now be shown. This analysis serves to sup-
port some arguments and qualitative discussions on phase matching of nonlinear
processes as will be discussed in Sec. 5. Later on, the frequency of the signal wave
will be taken as close to that corresponding to resonance of the grating. However,
in order to simplify the notation, the general and more qualitative analysis as con-
sidered here is carried out for an arbitrary frequency.

The general starting point for the band structure analysis is the one-dimensional
time-dependent wave equation of linear magneto-optic media in the Faraday

configuration,??

0?E(z,t) 1 0?

_ 19 9E(z,t)
0z2 c? Ot?

n?(2)E(z,t) + g(2) x Y

=0, (15)
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in which the gyration vector g(z) for loss-less media is related to the linear magneto-
optical susceptibility and the static magnetic field as g = —i(X;’Zr;‘ /w)Bo.
For our current purposes, it is sufficient to consider a magneto-optic medium

with its optical and magneto-optical parameters obeying the periodicity conditions
n(z+A) =n’(2), v(z+A) =(2), (16)

where as previously n? = 14 X is the square of the optical refractive index of the
medium, v = iBjxg;> is the gyration coefficient, and A the spatial period of their
modulation. The periodicity of the material parameters implies that they can be

expanded into Fourier series as

n?(z) = Z 72, exp(imKz), (17a)
Yz) = > Amexp(imKz), (17b)

in which K = 27 /A is the magnitude of the reciprocal grating vector. In order to
simplify the analysis, it is now assumed that the dominating terms of the Fourier
expansions in Egs. (17) are the first-order terms with m = 0 and m = +1, as
n?(z) = ng +n?, exp(—iKz) + n? exp(iK z), (18a)
v(z) = Jo + J-1 exp(—iK z) + J1 exp(iK z). (18b)
This is in particular a highly valid approximation for fiber Bragg gratings or gratings
inscribed in other waveguiding structures, which to a high level of accuracy can be
modeled as being sinusoidal in their spatial modulation of the refractive index
distribution.?

The transverse and circularly polarized eigenmodes of the electromagnetic field
in a one-dimensional magneto-photonic crystal, which in order to be relevant for
band structure analysis has to be assumed to be of infinite longitudinal extent, are
characterized by wave numbers ki as

E(r,t) = Re[e Ey, (2,t) + e_Ej_(z,t)], (19)
in which the complex-valued circularly polarized electric field components are
Ei, (z,t) = upy (2) expli(kez — wt)], (20)
with their envelopes satisfying the condition of periodicity
gy (2 + A) = ug (2). (21)

From the Bloch theory?®3° the periodicity condition in Eq. (21) also implies that
the electric field can be expressed in a Fourier expansion, as

By, (z,t) = Z E* expli(ks + mK)z — iwt], (22)

in which E’fé are the Fourier coefficients of the circularly polarized eigenmodes. By
inserting the Fourier series given by Eq. (22) and the approximate expression for the
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material parameters as given by Egs. (18) into Eq. (15), one obtains, after some
straightforward algebra and by projecting out phase matched terms, an infinite
chain of equations for the Fourier coefficients of the electromagnetic field as

2
w _ _ ~ - - ~
c—;[(nil +541) By + ( +7-1)Ef 1]
wi o . - 27rm ?

+ 0—2(n0+70) A 7 (23&)
w? 3
2 [("+1 7+1)Em 1+( - - 1) m+1]

w2 2mm ~

The goal now is to extract the dispersion relation w(k) from these relations. By
limiting to a fixed number terms in the solution chain given by Egs. (23), say in
total 2M + 1 terms with —M < m < M, the eigenvalue problems for the normal-
ized eigenfrequencies wi A/7mc as a function of normalized wave-vectors ky+A/m can
be formulated as two tri-diagonal linear systems, one for each circular polariza-
tion state,

+ + ot
d=y 521 E=
+ + + )
St1 d—M+1 S_1 :
’ - . E:—tl
+ + o+ o _
sy, dy  sTy Ej =0, (24)
5 EF
+ + + )
st dy_y 5Ty
+ + ot
sty dy Ey

in which the diagonal elements are
A\® [keA °
d:t — ~2 + 5 W+ _ 2
m (no 70) < T p + )

form = —M,..., M, and with all sub- and super-diagonal elements being equal for
each polarization state,

+ ~2 ~ wA ? + -9 - w+ A 2
st = (4 £741) e ) 5Ty = (2, £9-1) P

By requiring the determinant of the system matrix of the eigenvalue equation (24)
to be zero, one obtains two (2M + 1)-order polynomial equations for the squared
normalized eigenfrequencies as a function of the normalized wave vectors, with one
polynomial for each circular polarization state of light. These equations form the
implicit solution curves for the dispersion relations w. (k4 ) and w_(k_), and their
solution for the case of the left circular polarization state is shown in Fig. 2, for
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wil/me

k+A/7T

Fig. 2. The dispersion relation w4 (k1) of left circularly polarized light propagating in an infinite
periodic magneto-optical structure in which the magneto-optical modulation is zero, for B = 0
(dashed) and Bg > 0 (solid). The optical band gaps are in the graph indicated by grey regions.
Notice the asymmetric influence of the application of a static magnetic field, clearly discriminating
between forward and backward traveling modes. For a right circularly polarized field, the analogous
dispersion relation is obtained by using the inversion symmetry property w_(k—) = w4 (—k4).

the case of a non-dispersive medium and for the sake of simplicity in the limit of
zero modulation of the magneto-optical coefficient, with 411 = -1 = 0. In the
numerical calculation of the band diagram shown in Fig. 2, a value of M = 7 was
used, and in order to clearly illustrate the band gap and effect of the magneto-
optical interaction, the refractive index modulation and gyration coefficient were
exaggerated compared to a real medium such as, for example, a fiber Bragg grating,
in which the frequency width of the band gap typically is of the order of 10~ of
its center frequency; an explicit formula for the width of the band gap in magneto-
optical gratings is given in Sec. 5.

As shown by the solid graph in Fig. 2, the main impact of the inclusion of
magneto-optical interactions is the symmetry-breaking of the dispersion character-
istics of forward and backward traveling modes of the electromagnetic field. While
the dispersion curve of the forward traveling mode for positive values of 7 is effec-
tively shifted upwards by the magneto-optical interaction, the dispersion curve of
the backward traveling is shifted in the opposite direction. As the optical band
gaps as experienced in forward and backward directions of propagation are shifted
in opposite directions relative to each other, illustrated by the gray regions in Fig. 2,
this implies that the spectral selection and transmission characteristics of the grat-
ing can be considerably different in opposite directions of propagation. In particular,
for nonlinear optical processes this means that a circularly polarized wave launched
in the backward direction will experience a considerably different situation for the
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phase matching in comparison to the same polarization state being launched in the
forward direction.

The symmetry breaking as demonstrated here is a property not only intertwined
with the magneto-photonic crystals, but also applies to microscopic electronic prop-
erties of magneto-optic media in general. In fact, a similar skewness is naturally
found for example in the electronic band structure of magnetic semiconductors.?!

5. Two Limiting Cases in Wave Propagation

Before proceeding with actually solving the nonlinear and coupled system of
Eq. (13), the solution to the two limiting cases of a linear medium and a spatially
non-modulated medium will be discussed. These special cases are important as ref-
erences for the design process, since the linear optical regime essentially sets the
dispersion characteristics necessary for achieving an efficient phase matching, while
the case of a longitudinally spatially uniform medium sets the reference level of
parametric amplification, against which the figure of merit of the grating-enhanced
configuration is judged.

5.1. Linear regime

For the case of linear wave propagation the nonlinear source terms are neglected,
and the system (13) is considerably simplified by noticing that no backward scatter-
ing occur for wave components other than those belonging to the signal wave. The
resulting linear coupled equations of motion for the signal wave are straightforward
to integrate analytically, to yield the general solution for the forward and backward
traveling components as

At (z) = [GfE sinh(éx2) + G5 cosh(é42)] exp(—ias 2), (25a)
AYF(2) = —(i/w5){ G [ax sinh(£x2) + i€ cosh(£+2)]
+ GE [ cosh(€xz) + i sinh(£42)] } exp(iog 2), (25b)
in which the short-hand notation {1 = (|Hi|2 — ozzi)l/ ? was introduced, incor-

porating the frequency detuning ax of the signal as given by Eq. (10), and the
propagation coefficient of the waveguiding structure via the coupling coefficient x4
as given by Eq. (14). In Egs. (25), Gi and G are constants of integration deter-
mined by the boundary conditions of the grating. The solutions given by Egs. (25)
should not be confused with the dispersion relation as previously obtained by the
Bloch theory, as the latter relates to an infinite medium with perfect band gaps,
serving so as to discuss the asymptotic limit of phase matching, while the present
solutions relate to a medium of finite length. However, in the limit of an infinitely
long grating the two cases naturally converge.

By applying the boundary condition that no light is input at the exit end of the
grating, the requirement on Eq. (25b) yields A®¥ (L) = 0. By furthermore expressing
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the solutions in terms of the original complex field envelopes by using Eqgs. (8), the
explicit solutions for the forward and backward traveling components are

E (z,y,2)
it _agcosh(§eL) + iy sinh(§e L)
= A7 (0)Fy(x,y) [Cosh(fiz) oz Sh(EL L) T i€2 cosh(éx L) smh(fiz)}

X exp (zﬁfz —iatz), (26a)
EgT(w,y,2)

a4 cosh(§4 L) + 94 sinh(§+ L)
oy sinh(€4 L) 4 i€y cosh(Ex L)

= (i/k3) AT (0) Fi(z,y) [

X (a+ sinh(€+2) + i€+ cosh(é+2)) — (ax cosh(éxz) + iés Sinh(fﬂ))}

x exp ( — Bz + it z). (26D)

The explicit solutions given by Eqs. (26) fully specify the intra-grating spatial evolu-
tion of the optical fields at low intensities, and are highly useful for design purposes.
For a grating of geometrical length L the complex-valued linear transmission and
reflection coefficients 7o = ESX(L)/EL(0) and ps = ESF(0)/ELE(0) of the signal
are from Egs. (26) obtained as

—ikg sinh(§4 L)
[ax sinh(£4 L) + €4 cosh(éL L))’
ry = W ODUSTL —iogl) (21h)
[a+ sinh(§+ L) + i€+ cosh(£+L)]
satisfying the polarization-dependent Stokes relation |7|? +|p+|? = 1. Notice that
in this regime, the reflection and transmission coeflicients seem to be independent of
the transverse spatial profile of the waveguiding structure; however, the influence of
the waveguiding on the reflection or transmission spectra is always present through
the modification of the propagation coefficients ﬂli, which in turn effectively shifts
the response of the grating in the spectrum as compared to a stratified medium in

Pt = (27a)

which no dependence on the transverse coordinates is present.

From Egs. (27), the stop band corresponding to the band gap as derived from
the Bloch theory in Sec. 4 is obtained as the parameter domain in which £, are
real, or

K/2 - |kx| < 5 < K/2+ |k

From this, a measure of the spectral width Awy of the band gap for left/right

circular polarization states can be obtained by approximating the propagation

coefficients of the signal as 57 ~ wifi1 (1 £ 41/273) /e, giving
(a £ b)wy

27 (1441 /22)°

Awi = (28)
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Another important figure of merit of the grating is the transmission extinction ratio,
which is given as the quote between the minimum transmission at Bragg resonance,
at wres = ¢K /204, and the (unitary) maximum transmission. In a logarithmic (dB)
scale, the extinction ratio for left/right circularly polarized modes is obtained from
Egs. (27) as

_ |72
&a = —10logyq <ﬁ
+b)L
— 101 1+ 2sinh? m(a . 2
0 Oglo{ +esin (8&(11%/%%)/& (29)

For strong gratings with moderate magneto-optical modification of the propagation
coefficients, this logarithmic extinction ratio is well approximated by

5m(a+b)L

~ 101 2 —
£aB 0log; 2, A

log,g e. (30)
In particular, whenever (a &+ b)L/n;A > 2.7, corresponding to gratings with an
extinction ratio of at least 14.4 dB, a comparison between the exact expression (29)
and its approximation (30) reveals that the relative error introduced by the approx-
imation always will be less than one percent.

The signal transmission spectrum given by Eq. (27a) is shown in Fig. 3. For
more complicated distributions of the refractive index or magneto-optical gyration
coefficient, one can instead discretize the medium into finite elements with the
subsequent application of the transfer matrix form
gratings to yield numerical results with high ac
optical regimes, in the latter for example i

ism of magneto-optical Bragg
racy, in linear as well as nonlinear
corporating optical Kerr-effect and the

| | =" H
—3 ) 1 0 1 2 3
(W1 — Wres)/Aw

Fig. 3. Transmission of the signal wave as a function of optical frequency wi, for the incident
light being left (solid) and right (dashed) circularly polarized, assuming a zero spatial modulation
of the magneto-optical properties, with b = 0. The frequency is here shifted and scaled in terms of
the bias signal resonance frequency wres = ¢K /271 and transmission band width Aw = cKa/4ﬁ%.
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intensity-dependent polarization ellipse rotation as well as their magneto-optical

modifications.?8:24

5.2. Non-Resonant signal

As a figure of merit for the grating-assisted parametric conversion, the special case
of spatially non-modulated medium is of particular importance. This case has pre-

3:32 a5 well

viously been analyzed for magneto-optical parametric down-conversion
as in optical parametric oscillators,* and we will only quote here the main results
in terms of the explicit solutions for the field envelopes, using the same notation as
in the present work.

For magneto-optical parametric processes in spatially homogeneous media with
a = b = 0, an exact solution to Eqs. (13) is in the non-depleted pump approximation
obtained as?

AE(2) = {Aﬁi(()) {cosh(Kiz) - 1(2*37*> sinh(Kiz)}

+

n <@) ALE*(0) sinh(Kiz)} exp(ifzz/2),  (3la)
+

AFE(2) = {Agi(o) {cosh(Kiz) —z' ( i@) smh(Kiz)}

ti (@) AlF#(0) Sinh(Kiz)}eXp(iﬁiZ/2)7 (31D)
=+

where
= (CECE|AF (0" — g2 /a) "

is the effective gain parameter of the interaction, incorporating the phase mismatch
parameter 1 as given by Eq. (11). In the absence of an initial idler wave, the
signal amplification is in a medium of geometrical length L obtained from Egs. (8)
and (31a) as

[EG W] I h?(K.L) £, h*(K.L) (32)
= coS + sin +L).
|ESE(0))? AKE

Whenever the medium is enclosed in optically resonating structures, such as a
Fabry—Pérot cavity, exact solutions can also be obtained in terms of Jacobian elliptic
functions without employing the non-depleted pump approximation.* However, for
our present purpose the simplified solutions obtained within the non-depleted pump
approximation are sufficient, since it is within this scope of approximation the final
analysis of the equations of motion (13) is to be performed.
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6. Non-Depleted Pump Approximation

Whenever the energy transfer rate from the pump field to the signal and idler
ones is small as compared to the energy flow of the pump itself, we may in the
singly resonant case approximate the non-resonant pump beam as being of constant
magnitude across the medium of interaction. Within this approximation, which
applies generally whenever

f f fF|2
| AT ASE| < 145T[
the equations of motion (13) for the remaining components of the signal and idler
fields take the simpler form

f+
% — kLAY exp(—2iagz) — iCEALT(0)ALE* exp(ifiz) = 0,  (33a)
AT ,
8; — ke AT exp(2iasz) = 0, (33b)
aAf:l:
82'2 —iCF AL (0) AT exp(if12) = 0. (33¢)
The exponential spatial dependence in Egs. (33) can be eliminated by taking new
field variables ai®, a®*, and a}* according to
2 )
AE(2) = [CliAg:F(O)}l/ af®(2) exp(—iasz), (34a)
APF(2) = [CFALF(0)]/2 abF (2) expling 2), (34b)
1/2 .
ASE(2) = [CEATF(0)]'? = (2) expli(as + Be)2). (34c)

This substitution transforms the system given by Egs. (33) into the autonomous
differential equation

0 aL
W =A.ay, (35)

where
as(z) = (al*(2),a¥*(2), ab™ (2)) 7,

is a vector containing the normalized and dimensionless envelopes of the interact-
ing fields, and A4 is the complex-valued system matrix governing the linear and
nonlinear self-coupling and idler cross-coupling between the forward and backward
traveling signal modes,

i(a+9) KL int
Ay = K+ —i(a+£9) 0 , (36)
—ins 0 i(atd+0+7)

in which

N 1/2
ne = (CECE™) 2 A5 (0)
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is the gain parameter describing the strength of the nonlinear energy transfer
between the signal and idler,

o =(as+a.)/2= (B +B7)/2 - K2 (37)
is the bias resonance detuning of the propagation coefficients of the signal,
0= (s —a_)/2= (8] —py)/2 (38)
is the differential, magneto-optically induced resonance detuning of the signal,
B= (B +06-)/2 (39)
is the bias phase mismatch of the optical parametric process, and finally
v =8+ —6-)/2 (40)

is the differential, magneto-optically induced phase detuning of the parametric pro-
cess, with Sy as previously given by Eq. (11). Notice that while the bias phase
mismatch parameter § involves the difference between the propagation coefficients
of the pump, signal and idler, the magneto-optically determined differential phase
detuning acts so as to sum all rotatory strengths of the pump, signal and idler waves.
In bulk media, with 43 < n; and «’ =¥ = 0 in Egs. (12), with no waveguiding
modification to the propagation coefficients, the parameters given in Egs. (37)—(40)
are simply related to the refractive index and gyration coefficients as

a=wnifc—K/2, §=uw7/(2n10),
B = (wsnz — waly — wim)/c,

v = —(wi11 /M1 + waFa /N2 + w33 /Ng)/(2¢).

As in the case of the grating parameter k4, the interaction strengths n for orthog-
onal circular polarization states can always be chosen as real-valued by choosing
the initial phases of the pump field, corresponding to a choice of initial orientation
of the input polarization ellipse. However, this possibility, contrary to the grating
parameter, is dependent on the rotational symmetry of the medium around the axis
of wave propagation, that is to say the freedom of choice is opened up by choos-
ing the laboratory z-axis as pointing in the (111)-direction of the chosen crystal
belonging to point-symmetry group 43m.

The general solution to the system (35) of linear ordinary differential equations is

3
at(z) = Z ckigf) exp()\gf)z), (41)
k=1

where )\f) and ng) = (5;? , féi) , féi))T are the kth non-degenerate respective eigen-

values and eigenvectors of AL, and where Cf are constants of integration, deter-

mined by boundary conditions. Hence the problem of solving the original system
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of differential equations (13) has been reduced to the problem of finding the eigen-
values, determined by the equation

det(Ax —APT) =0, (42)
and the corresponding eigenvectors, determined by
(Ax —2P1)el =0, (43)

where I denotes the rank-three identity matrix. The complex third degree polyno-
mial equation (42) can, after some straightforward algebra, be solved analytically for
the eigenvalues )\gf ), in terms of which the corresponding eigenvectors are obtained
from Eq. (43) as

(o 6)ne — AP

Qf) = — RN+ ) (44)
|I€i‘ CEXOE )\gf)Q

for k =1,2,3.

Together with the forms of the variable transformations as used in Egs. (8)
and (34), the eigenvalues and eigenvectors fully determine the general solution
for the optical field evolution inside the medium of propagation, in terms of the
material properties and optical frequencies. However, in order to determine the
coeflicients of integration ¢y, which in turn determine the reflected and transmitted
field components from given input signal and idler fields af (0) and a5(0), boundary
conditions must be applied. By evaluating the expression (41) at the beginning
(z = 0) and end (z = L) of the grating, and furthermore imposing the condition
that the backward traveling field component at the end of the grating vanish, the
constants of integration cj, are obtained as

¢V 2 ¥ *1a&@

c1. 1
o, | = €2ieli fZiegi fZiegi 0 , (45)
= 6 & " (0)

where the notation ep, = exp(/\gi€ )L) was introduced for the sake of algebraic

simplicity. The transmitted and reflected field envelopes of the signal (w;) and idler
(we) waves are then from the integration constants and incident field envelopes
explicitly obtained as

aﬁi(L) fli €1. fli €2, fli €3. Ciy

d*) | =] &) g & ey |- (46)
fdx

ay" (L) éli)eli £:§2)6 24 53 €34 3

Although being somewhat complex in their algebraic appearance, Eqgs. (41)—(46)
form an explicit and analytical solution to the signal and idler field evolutions in
optical parametric conversion in magneto-optical Bragg gratings.
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7. Discussion

As an illustration of the optical parametric process in magneto-optical Bragg grat-
ings, we consider a medium in which only the index of refraction is spatially modu-
lated, with the linear magneto-optical properties being uniform over the extent
of the grating, with b = 0. For simplicity in presenting the ideas, we choose
to also neglect the usually small magneto-optical contribution to the nonlinear-
ity, with x50 = 0. However, it should be emphasized that the explicit solu-
tions given by Eqgs. (41)—(46) include these terms as well, and that the method
of numerical evaluation is identical in these cases. Assuming the nonlinear suscep-
tibility to be roughly one tenth of that of common nonlinear materials possessing

a second-order nonlinearity, such as for example LiNbOs, the second-order suscep-

eee
rxrx

I, = (g0c/2)|Ey,|? = 100 MW /cm? this choice corresponds to a nonlinear gain

parameter of n = 0.3 cm ™.

tibility is chosen as x = 1.0 x 107*2m/V. At an incident pump intensity of

As for the refractive index modulation, we choose a moderate value of a =
0.9 x 10~* and a bias refractive index 7 = 1.8 at a signal wavelength in the order

of 1.0 pm, which gives a linear coupling coefficient of |k4| = [k_| = 1.4cm ™. For
a grating of geometrical length L = 3.0 cm, this, from Eq. (30), corresponds to a
logarithmic extinction ratio of {gg = —15.4dB in the absence of the optical pump.

From Eq. (28) this choice of coupling coefficient furthermore corresponds to a very
narrow spectral width of Aw/w; = 2.5 x 107° of the optical band gap, which at a
resonance vacuum wavelength of approximately 1.0 gm for the signal corresponds to
a spectral width of AX = 0.025 nm. An advantage with employing such small optical
band gap is that the magneto-optical interaction strength necessary to achieve
tunability of the resonance is moderate. We furthermore assume a moderate bias
phase mismatch of 3 = 10.0cm ™! of the grating, and for the limiting case of a non-
modulated medium as analyzed in Sec. 5, this choice, from Eq. (32), corresponds
to a maximum possible amplification of
[BE (L)

lOloglo (m) = 07dB,
w1

in the absence of static magnetic fields and in a corresponding homogeneous medium
which otherwise possesses the same material parameters.

The logarithmic amplification of a left circularly polarized signal in transmission
of a nonlinear grating possessing these material parameters and pump intensity is
shown in Fig. 4, as a function of the grating detuning parameter «. This graph acts
as a design example illustrating optimization of the detuning parameter in designing
a proper phase matching scheme of the grating, and in order to determine which
regions allow an enhancement over the case of a uniform medium, the corresponding
amplification in a non-modulated case is included as well. As shown in the figure, the
presence of the optical stop band effectively blocks any signal amplification in the
resonant region of the grating. However, at a bias detuning of o = —4.66cm™!
the signal amplification is considerably increased, reaching a peak value of 13.8 dB.
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Fig. 4. Amplification 10 loglo(\Eﬁ[ (L)/Ei,t (0)|?) of a left circularly polarized signal in trans-
mission vs bias detuning « of the grating periodicity relative the signal resonance frequency, in
absence of the static magnetic field. The dashed reference line shows the corresponding amplifica-
tion level of 0.7dB in a medium in which the refractive index is spatially uniform. Used parameters
are 3=100cm™ ', v=0,6=0,7=30cm ™!, K = 1.4cm~!, and geometrical length L = 3.0 cm.
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Fig. 5. Logarithmic amplification of the reflected signal vs bias resonance detuning a.. The dashed
reference line shows the corresponding forward amplification in a medium in which the refractive
index is spatially uniform. All parameter values used are identical to those used in Fig. 4.

This clearly illustrates the radical impact which can be achieved of the band gap
dispersion in grating-assisted phase matching of the parametric amplification. Far
from the band gap the amplification asymptotically approaches that of a uniform
medium, as expected when the off-resonance transmission reaches unity.

The effect of the band-gap dispersion on the phase matching is not limited only
to the transmission mode of amplification; in reflection mode the effect can also be
considerable, as shown in Fig. 5. In this case, the signal amplification is even higher,
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reaching a value of 17.9 dB at the same detuning as for the transmission maximum.
As can be seen in the graph, some amplification occurs also in the band gap in
reflection mode, though far from ideal levels. However, due to that the test grating
as considered here is chosen as not being apodized at the ends, the resulting Gibbs
oscillations'® at the edges of the band gap are considerable, causing the reflected
amplified signal to oscillate heavily with the detuning «. This makes the amplifica-
tion sensitive to variations of the environment of the interaction, such as temper-
ature and strain fluctuations. This potential problem, however, opens up for one
of the features brought in by the inclusion of magneto-optical interactions, namely
the tunability by means of the strength of the applied static magnetic field, which
can be used for compensation of any deviations of parameters of the basic design.

The requirement for the magneto-optical interaction strength to be sufficient
for compensation of any drift in the detuning parameter « is that the differential
detuning § should be able to reach a value corresponding to at least a few widths
of the peaks in the Gibbs oscillations, in this case in the order of 1 cm™!. Whether
this differential detuning can be reached or not depends on the Verdet coefficient V'
of the medium and the strength of the applied static magnetic field. For a typical
value of V = |X§Zr§|w/(2ﬁc) = 80radT!'m~! for magneto-optical glasses in a
transparent regime,?? the maximum achievable differential detuning at a magnetic
field of Bf = 1.0T is § = 0.8cm™'. Associated with the differential detuning is
also the shifting of the response of circularly polarized fields in opposite directions
in the spectrum. This effect is shown in Fig. 6 for a linearly polarized input signal

20 I I ]
! Reflected signal

Amplification [dB]

Fig. 6. Logarithmic amplification of the reflected left (solid) and right (dashed) circularly polar-
ized signal vs bias resonance detuning « in the presence of a static magnetic field of B = 1.0'T, act-
ing so as to lift the polarization state degeneracy. The dotted reference line shows the corresponding
forward amplification in a medium in which the refractive index is spatially uniform. The magneto-
optical material parameters were taken as §/B¢ = 0.8cm~'T~! and v/B§ = —2.0cm™1T~!, with
all other parameter values identical to those used in Fig. 4.
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and pump. As shown in the figure, the peaks of amplification are clearly resolved
between the reflected left and right circular polarization states.

In the grating-assisted parametric amplification as considered here, the peri-
odic modulation of the medium and the associated detuning parameter « clearly
have the main roles in achieving a high efficiency, with the magneto-optical inter-
actions providing the means to adjust any imperfections or deviations of the design
set by the bias detuning. For instance, by choosing operation at the optimum of
amplification in reflection in the absence of static magnetic fields, this naturally
means that the amplification of the signal will decrease as the magnetic field sets
in, in a symmetrical manner as illustrated in Fig. 7; the point here is rather that
the magneto-optical interaction should be employed as a means for compensation
whenever environmental changes causes a drift in the optimum amplification, using
the tunability as illustrated in Fig. 6.

Associated with the magneto-optical interaction is also the polarization state
selectivity in the amplification. By again choosing the case of optimum amplifica-
tion in the absence of magnetic fields, for which we expect the degenerate case in
which left and right circular polarization states act on equal footing, the case of a
linearly polarized signal and pump gives a linearly polarized amplified signal. As
the magnetic field is switched on, the polarization state of the amplified signal nat-
urally varies with the applied field strength; however, in contrast to the case of the
amplitude, the polarization state of the amplified light shows clearly asymmetrical
characteristics with respect to the applied static magnetic field, as shown in Fig. 8,

20— ' =

Reflected signal

Amplification [dB]

-1 —0.5 0 0.5 1
B [T]

Fig. 7. Logarithmic amplification 10 log10(|EB;r (0)]2+ \E'B; (0)|2)/(|E£,Jg (0)]2+ |E£,; (0)]?) of the
reflected signal vs static magnetic field B, in a configuration with linearly polarized incident signal
and pump fields and with the resonance detuning chosen as corresponding to the maximum ampli-
fication as in Fig. 5, with o = —4.66cm™~1, §/B = 0.8cm~!T~!, and v/B¢ = —2.0cm~'T~ 1
The dashed reference line shows the corresponding forward amplification in a medium in which
the refractive index is spatially uniform. All other parameter values used are identical to those
used in Fig. 4.
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(LCP) 11 I I _]

e = |ESTO)1P—|ES; (0))
r = TR o o s
|EST (0)[2+]EZT (0)]2

=
o

Reflected ellipticity €,

0
-0.5
1 _|
RCP | | |
( ) -1 -0.5 0 0.5 1
B§ [T

Fig. 8. Normalized ellipticity e of the reflected signal vs static magnetic field B§, with all
parameter values identical to those used in Fig. 7.

where the reflected polarization state ellipticity

2 _ 2
ESH(0))* — |EL(0)]
|ESF(0))2 + | EBT ()]

€r

is mapped against the applied static magnetic field. In this normalized form,
€; = —1 corresponds to right circular, ¢, = 0 to linear, and ¢, = 1 to left circular
polarization state.

8. Conclusions

In conclusion, we have presented an analytical theory of optical parametric inter-
actions in magneto-optical Bragg gratings. The non-reciprocity introduced in the
band structure of magneto-optical gratings was discussed in terms of Bloch theory
of infinite media, and further linked to cases with gratings of finite extent. Phase
matching schemes for optical parametric amplification relying on the dispersion
characteristics introduced by a spatial modulation of the linear optical properties
of the medium were discussed, and by imposing linear magneto-optical effect onto
the phase matching we have shown the symmetrical and asymmetrical impacts on
the amplitude and polarization state of the amplified signal, respectively. An advan-
tage with using small modulation amplitudes of the refractive index together with
a longer grating is that the effective interaction length of the nonlinear process
increases, while also providing for a very narrow optical band gap, which enables
a wide magneto-optical tunability at moderate magnetic field intensities also in
media with small Verdet constants.
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