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1. Introduction and General Aspects

Here we address and assess the use of magneto-optic processes to perform certain

functions, in particular as regards the manipulation of the polarization state of a

beam, and the introduction of magneto-photonic structures and microcavities to

enhance the weak magneto-optic strength that usually prevails there.

The study and use of magneto-optical effects did not follow the same pace as

the nonlinear optical and electro-optical effects. In part this can be traced to the

reduced strength of the magnetic dipolar coupling, with respect to that of the

electric dipolar one, but also in part to the frequent overlook that the relevant

features which are predominantly involved in the magneto-optical interactions are

not the same as the ones in the case of all optical or electro-optical ones. Thus in

contrast to the latter which predominantly affect the longitudinal characteristics

of the beam propagation, in particular its wave vector and frequency, the former

have their most striking impact on the polarization state of the beam, introducing

outstanding sensitivity and robustness in the optical interactions. But most and
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foremost the applied static magnetic field in the case of magneto-optical interactions

breaks the time-reversal symmetry and introduces a non-reciprocity in the beam

interactions, with striking repercussions on the polarization state behavior which

cannot be straightforwardly mimicked with all optical effects. It is precisely these

aspects that constitute the distinctly new feature in the magneto-optical effects and

where the effort should be directed.

Still the smallness of the magneto-optical coefficients, in particular in the trans-

parency regime of the dielectrics, has precluded the consequent exploitation of these

aspects and restricted their use in some applications that are not directly imple-

mented in the all optical information storage, transmission, redistribution, manip-

ulation that exclusively rely on nonlinear or electro-optical effects. There has been

noticeable progress2,1 in recent years in the conception of materials with enhanced

magneto-optical coefficients, in particular Faraday and magneto-optic Kerr coeffi-

cients. In addition, in the case of nonlinear optical and electro-optical materials,

whose performances were greatly improved through the electromagnetic and quan-

tum confinement and the fabrication of photonic structures thereof,3–8 recent stud-

ies show that the same can be exploited in the case of the magneto-optic materials

through the development of magneto-photonic structures.

As in the case of the photonic gratings obtained by the spatial periodic mod-

ulation of the electric dipolar coupling, or equivalently of the dielectric constant,

one can also simultaneously superimpose on such photonic modulation a spatial

modulation of the magnetic dipolar coupling, or equivalently of the magnetization

state over a photonic grating, and exploit the redistribution of the density of states

of the electromagnetic field with the appearance of gaps and resonances that pro-

foundly affect and selectively enhance the propagation of the electromagnetic waves

and concomitantly the spectral features that the structure can sustain. But in con-

trast to the case of pure photonic structures where time-reversal symmetry strictly

applies, leading to the propagation being reciprocal, in the case of the magneto-

photonic ones the time-reversal symmetry breaks down and the non-reciprocity

becomes an intrinsic feature of the interactions; this leads among other things to

a distinction between forward and backward propagation in time and space which

profoundly affects the polarization state of the beam since the interference patterns

between the beams is drastically affected, as is also their coupling.

With the enhancement of these features through the photonic and magneto-

photonic confinement and spatial modulation, the strength of the nonlinear effects

with respect to light intensity also becomes relevant and in fact the photoinduced

regime can drastically modify the linear regime; in the case of magneto-photonic

gratings (MPGs) it can as much as drastically affect the degree of non-reciprocity

and under extreme conditions even suppress the latter.

Here we review some aspects of the magneto-photonic gratings, single out the

manifestation of the non-reciprocity in their characteristics, and subsequently as-

sess the interplay of the non-reciprocity and the optical nonlinearity. In Sec. 2

we review the material aspects of the magneto-photonic gratings and the material
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choices and values of magneto-optic coefficients that presently prevail in the ongoing

fabrication effort. In Sec. 3 we recapitulate the nonlinear constitutive optical and

magneto-optical relations, and discuss their reciprocity considerations in Sec. 4, and

the coupled mode theory of operation of magneto-photonic structures in Sec. 5. In

Secs. 6 and 7 we sketch the general procedures for obtaining the transmission and

reflection characteristics of some specific magneto-photonic gratings, in particular

the periodic and chirped ones, and we also discuss and compare with the case of

inclusion of gyrotropic defects in photonic gratings, namely magneto-photonic mi-

crocavities, as an alternative. We then sketch the nonlinear or photoinduced regime

in such structures and discuss some specific cases of photoinduced modification of

the transmission and reflection characteristics of these magneto-photonic gratings.

We conclude with some possible extensions and applications in devices.

2. Magneto-Photonic Gratings and Microcavities.

Materials and Configurations

Recently,3–8 a strong interest is emerging in the study of magneto-photonic gratings

and microcavities and some noticeable progress has been achieved towards their

fabrication. Besides the study of their intrinsic features, there is also the possibility

of enhancing and improving the performances of several important magneto-optic

devices such as polarization modulators, isolators and sensors that increasingly find

their way into high performance laser systems and optical information technology

although not yet into the main chain of optical information processing where at

present only the photonic ones seem to be envisioned.

As with the case of photonic gratings one can envision a multitude of magneto-

photonic gratings in particular with regard to their dimensionality. For the

nonlinear magneto-optic regime we wish to address here, it suffices to consider

one-dimensional (1D) magneto-photonic gratings and microcavities. It turns out

that this is the configuration where the non-reciprocity also has its main impact

(Faraday configuration). If we restrict ourselves in the case of one-dimensional grat-

ings formed by piling up an equal number of identical magnetic and non-magnetic

layers with the light beam incident normally on this stack we may still have several

possible configurations differing by the order the piling is made, whether periodic or

not, and with or without insertion of “gyrotropic defects”; the latter is a magnetic

layer, formed from a ferro/ferri-magnetic material or a magnetic impurity-doped

dielectric/semiconductor, with specific gyrotropic properties that are also frequency

dependent and resonantly enhanced.

The main problem with the bulk magneto-optic materials is the difficulty to

improve their gyrotropic properties, for instance their Faraday rotation strength,

without a concomitant increase in their absorption; this is detrimental for their

consideration in optical propagation applications or in extended and repeated so-

licitation of their gyrotropic function because of the cumulative effect on the optical

signal intensity. With the recent progress in improving the gyrotropic properties of
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dielectrics by doping with heavy magnetic impurity ions and the emerging progress

in the fabrication of periodic structures thereof where magnetically doped and un-

doped layers of appropriate thickness are periodically stacked, a definite interest

has been expressed in the study and exploitation of such structures and the new

functionalities that can be introduced. An alternative approach is to use a quan-

tum confined magnetic layer sandwiched between two photonic structures, namely

a microcavity.9 These two cases, namely the periodically distributed and the local-

ized magneto-photonic coupling cases, will briefly be presented below and assessed

for certain magneto-optic interactions and functions. The more general case of in-

termingling these two configurations and studying the resulting characteristics can

also be discussed by extending the same procedures although with some consider-

able complication in the numerics and will not be attempted here.

In its most elementary configuration a 1D magneto-photonic grating is the singly

periodic one formed by a repeat unit consisting of a pair of a magnetic and a

nonmagnetic layer both assumed lossless and optically isotropic and in general of

different thicknesses3,5,7; optically anisotropic layers can also be considered but this

unnecessarily complicates the analysis and blurs the essential functions we wish to

stress here and similarly for optically lossy ones. In practice however both cannot

be avoided, in particular the optical losses, and provisions must then be made

to assess their effect on the performances of the magneto-photonic structure. On

the other hand one can straightforwardly extend the fabrication and analysis for

non-periodic MPG where the magnetic and nonmagnetic layers are more or less

randomly distributed, still keeping their respective total thicknesses and numbers

the same as in the periodic case. One can also insert gyrotropic defects, a layer

with distinct magneto-optic properties from those of the stacks and appropriately

adapt their characteristics with those of the magneto-photonic structure; care must

be paid here to avoid losses and destructive interferences.5

It goes without saying that in the singly periodic MPG there is also an underly-

ing photonic grating of same period; the case of different periods for these two super-

imposed gratings could in principle be envisioned but its fabrication and potential

usefulness is not evident. As in the case of the single periodic photonic grating the

central role is played by the Bragg resonance condition with the essential difference

now that this is polarization state dependent and different for the left and right

circularly-polarized components of a linearly-polarized beam. To the extent that

the Bragg resonance conditions determine the resonances in the transmission and

reflection characteristics of the MPG this indicates that these are different for the

left and right circularly-polarized modes or equivalently, the forward and backward

propagating modes of same circular polarization experience different characteris-

tics. This is a manifestation of the non-reciprocity and introduces the possibility

of making photonic structures with direction-sensitive functions including spatial

recognition and velocity sensitiveness.

The Bragg resonance characteristics besides their dependence on the layer thick-

nesses are also strongly conditioned by the refractive index contrast of the two layers
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and this affects both their position and width; in the case of the magneto-photonic

ones, because the degeneracy for left and right circular polarizations is lifted, each

“photonic” Bragg resonance is split into two, corresponding to the two circularly-

polarized components. The splitting between the two components is a measure of

the circular birefringence or equivalently the Faraday rotation strength in the mag-

netic layer.

Clearly a refractive index change, linear or circular, can also be enforced by

an intense light beam through photoinduced effects, the optical Kerr and the pho-

toinduced Faraday effects respectively, and it is anticipated then that the Bragg

resonance characteristics can be modified and to some extent controlled by photoin-

duced processes. Clearly for this to occur the total length of the photonic structure

must be such that the cumulative effect results in a substantial global optical phase

shift.9

The previous considerations can also be transposed to the case of a magneto-

photonic microcavity.8 Here a magnetic layer with thickness dm is sandwiched be-

tween two identical periodic photonic gratings (actually the asymmetric case of

two periodic photonic gratings with different repeat units can also be fabricated

and treated without much additional complication and in fact has definite advan-

tages over the symmetric one). The magnetic layer, also termed gyrotropic defect,

is formed by a ferromagnetic metal, ferromagnetic material or magnetic impurity-

doped dielectric such as semimagnetic semiconductor and most relies on the reso-

nant enhancement of the gyrotropy; in the case of the metals and semiconductors

the quantum confinement of the electrons can be exploited to substantially en-

hance the magneto-optic response of the layer and this is additionally enhanced

by the confinement inside the microcavity formed from the two photonic gratings;

the gyrotropic function springs from the Zeeman effect, the splitting of a transition

by the applied magnetic field, which in essence introduces a doublet of gyrotropic

defects one for each circular polarization. This configuration with the localized

magneto-photonic defect has certain advantages over the previous ones, where the

magneto-photonic coupling is periodically distributed, as far as the fabrication (for

all constituent elements and their interface this is well advanced and controlled)

and the analysis are concerned (the two photonic Bragg gratings being replaced

by equivalent mirrors and the whole being treated as a Fabry–Pérot microcavity).

However, it also has some serious disadvantages as it involves and solely relies on a

gyrotropic material resonance with concomitant losses and energy deposition inside

the microcavity.

Regarding the materials, in the case of the singly periodic magneto-photonic

gratings the choice is presently focused on the bismuth doped yttrium iron gar-

nets (Bi:YIG) for the magnetic layers and the gallium/gadolinium yttrium garnets

(GG:YIG) or plain silicate glass (SiO2) for the non-magnetic layer. Regarding the

choice of the magnetic layer the figure of merit used is the ratio (specific Faraday

rotation)/(absorption coefficient). The choice of the yttrium iron garnet matrices

is made because of their very low absorption in the infrared spectral region (the
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lowest among the ferrimagnetic dielectrics) the possibility to grow them in layers

of excellent optical quality, the relatively low refractive index (typically n0 = 2.185

or εr = 4.75) and well controlled magnetic domain structure; the bismuth possesses

one of the largest known spin-orbit splitting strengths (this being a relativistic effect

proportional to the ion mass and atom number Z) which leads to enhanced gyro-

magnetic factors and gyrotropic strengths and is now increasingly used in magnetic

doping for magneto-optic isolators, modulators and sensors. Unfortunately too high

Bi concentrations in the YIG may affect the domain structure, inducing instabilities

there and also introducing substantial absorption losses and even optical anisotropy.

In good quality Bi:YIG layers very weak magnetic field strengths are needed to ori-

ent the magnetic domains to saturation and reach Faraday rotations of a degree

over a wavelength through the resulting spontaneous internal magnetic field. One

has achieved very good performances in the interfacing of such magnetic Bi:YIG

layers with non-magnetic layers, in particular with the case of gallium gadolinium

yttrium iron garnets, with good lattice constant matching and appropriate optical

properties for use in magneto-photonic gratings their refractive index being typi-

cally nr = 1.921 or ε0 = 3.71 and leading to an average refractive index contrast

∆n0 = 0.264 for the Bi:YIG/GG:YIG pair. To increase this contrast one may re-

place the GG:YIG with plain glass n0 = 1.50 or εr = 2.25 and ∆n0 = 0.685 for

the Bi:YIG/SiO2 pair but the growth of such MPG still needs additional study and

improvement. By proper choice of the grating characteristics one can operate the

MPG either on transmission (Faraday) or reflection (magneto-optic Kerr) mode.

In the case of the magneto-photonic microcavities the most relevant studies have

been performed with semimagnetic semiconductor microcavities,8 consisting of a

semimagnetic semiconductor quantum well sandwiched between two non-identical

photonic Bragg mirrors, also fabricated with semimagnetic semiconductor layers for

lattice matching purposes but with different magnetic impurity concentrations, so

that the spectral features are different from those of the sandwiched quantum well; a

static magnetic field is applied along the axis of the microcavity. The semimagnetic

semiconductors are typically II–VI compounds, e.g. CdTe or CdSe, with the II-

element partially replaced (substitutionally) with a transition element magnetic ion,

e.g. Mn+2; the cubic stucture and tetrahedral sp3 bonding are preserved, but a spin

exchange interaction between the band electrons and impurity d-electrons leads to a

dramatic increase in the effective gyromagnetic (Landé) factor, typically two orders

of magnitude at low temperatures (less than 12 K) but monotonically decreasing

with higher temperatures. This leads to giant Zeeman splittings and concomitantly

giant Faraday rotations. The molecular beam epitaxial growth technique allows

perfect control of all the relevant optical features and doping here. Actually, by

variable transverse doping one effectively obtains on the same structure a whole

series of magneto-photonic microcavities with different characteristics: the Bragg

resonance condition can be varied in the transverse direction, as can the spectral

features of the quantum confined resonances in the quantum well.
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Magneto-photonic microcavities were also obtained by sandwiching a ferromag-

netic metal layer, ex cobalt, between two photonic Bragg gratings, and one can

envision doing the same between two magneto-photonic Bragg gratings. Being fer-

romagnetic and possessing cubic symmetry, cobalt has large Faraday rotations but

also large absorptions. For this reason, which is also valid for the semimagnetic

semiconductor microcavities, one uses the magneto-optic Kerr effect configuration

and operates in reflection mode.

We recall that for an isotropic magneto-optic medium in static magnetization

state M0 the relation between the dielectric induction Dω and the electric field

Eω of the propagating electromagnetic field (for which we adopt the convention

exp(ik·r−ωt) for plane waves) in the Faraday configuration is given by the relation10

Dω = ε0(εrEω + iEω × g), (1)

where εr is the dielectric constant, a scalar in the present case of isotropic medium

with εr = n2, and g is the the gyration vector with g = µ0γM0, where γ is the

gyrotropic strength, and related to the specific Faraday rotation angle ΦF (polar-

ization rotation angle per unit length) and the Verdet constant V (rotation angle

per unit path, per unit magnetic field strength) through the relation

ΦF =
ωg

2n0c
= V B0 ,

as conforming to the classical/historical conventions of notation and units. We also

find that the propagation eigenmodes are now the left and right circularly-polarized

modes with refractive indices n± = n0(1 ∓ g/2n2
0) and polarization states e± =

(ex ± iey)/
√

2; this difference in refractive indices for left and right circularly-

polarized light is also termed gyrotropy, and is measured with the g-parameter. The

non-reciprocity in magneto-optics precisely springs from the vector product term in

Eq. (1). Alternatively, and in line with the introduction of nonlinear susceptibility

formalism as applied below, setting Dω = ε0Eω + Pω and Pω = P
(1)
e + P

(1)
m where

P
(1)
e = ε0χ

(ee)E, one may describe the vector product in Eq. (1) as a magnetization

induced polarization term and write

P(1)
m = ε0χ

(eem)EωB0 , (2)

where B0 = µ0(H0 +M0) and in the case of a magnetic medium only the magneti-

zation matters. In Eq. (2), χ
(eem) is the second-order magneto-optical susceptibility

tensor, of rank three. For isotropic media, one easily finds that the relation (2) can

be written as the cross product appearing in Eq. (1), with

g = −iχ(eem)
xyz B0

being an axial vector, or pseudo-vector.11 One may alternatively write this as an

effective first-order rank-two susceptibility1,2
χ

(1)(M0) = χ
(ee) + χ

(eem)B0. These

coefficients satisfy the Onsager relations that are another manifestation of the non-

reciprocity brought in by the static magnetic field. Actually the previous relations

can also be derived starting from the appropriate thermodynamic potential.
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For intense optical fields the material coefficients εr and g undergo photo-

induced changes which can be described in terms of nonlinear susceptibilities; for the

nonlinear regime of the photonic and magneto-photonic gratings we are considering

here (with respect to light intensity) the lowest order ones are the photo-induced re-

fractive index change, or optical Kerr effect, and the photo-induced Faraday effect,

respectively related to the polarization terms

P(3)
e = ε0χ

(eeee)EωEωE∗
ω ,

P(3)
m = ε0χ

(eeeem)EωEωE∗
ωB0 .

We have assumed that the medium has inversion symmetry and we only concentrate

on the response at a single frequency ω. One may alternatively write this as an

effective third-order polarization density

P(3) = P(3)
e + P(3)

m = ε0χ
(3)(M)EωEωE∗

ω ,

where χ
(3)(M) = χ

(eeee) + χ
(eeeem)B0 is the rank-four effective third-order sus-

ceptibility tensor. These coefficients also satisfy Onsager type relations. While the

complex character of the χ
(n) only reflects the non-reciprocity when the partial χ’s

are real (no absorption losses), when absorption losses are present the partial χ’s are

complex and one must pay some attention in the formulation of the Onsager rela-

tions. One can derive quantum mechanical microscopic expressions for the magneto-

optic coefficients using the same perturbation techniques as for the optical ones,

and show that all the macroscopic symmetry properties are incorporated there too

including the non-reciprocity and the ones resulting from spatial symmetry opera-

tions (e.g. crystalline symmetry).

In general it is very hazardous to roughly estimate the magneto-optic coef-

ficients, much more so to evaluate them starting from their quantum mechanical

expressions; it is here important to remind ourselves that magnetism is a quintessen-

tially quantal and a relativistic manifestation at a macroscopic scale. The reasons

for the computational complexity are diverse and well identified: the computation of

magnetic dipole transition moments has several contributions, spin and orbital, the

latter involving the electron impulse operator which, in contrast to electric dipole

operator, is difficult to calculate, etc. The situation of course is increasingly com-

plicated as we move up into higher-order magneto-optic susceptibilities. We may

get a rough relative estimate however by using some simple scaling arguments. On

inspection of the quantum expressions thus one may roughly set

χ
(eeeem)B0/χ

(eeee) ≈ χ
(eem)B0/χ

(ee) = g/χ(ee)
xx ,

and from the definition of the Faraday rotation angle in terms of the Verdet constant

one hence gets

χ
(eeeem)B0/χ

(eeee) ≈ 2ncV B0

ωχ
(ee)
xx

=
λ0nΦF

π(n2 − 1)
= κ .
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Thus for glass (SiO2) with a Verdet constant of V = 10 rad/Tm one gets κ =

0.4× 10−5 for B0 = 1 T, while for Bi:YIG with ΦF = 0.5 deg/µm one gets close to

κ = 0.2× 10−2, a very comfortable number for applications. The above arguments

are valid away from resonances, in the transparency region of the material, where the

absorption losses are minimal and hence appropriate for magneto-photonic gratings

either in reflection or transmission modes.

Close to resonances for magnetic layers to be inserted as gyrotropic defects in

magneto-photonic gratings, for instance ferromagnetic metal layers or semimagnetic

semiconductor quantum wells, one can actually evaluate or measure the relevant

oscillator and gyration strengths quite accurately and compute the relevant coeffi-

cients; here the coefficients are resonantly enhanced and can reach very high values,

with the effective Verdet constants becoming orders of magnitude higher with re-

spect to the previous cases. Unfortunately close to a resonance absorption losses

are also present and must also be considered and the figure of merit becomes then

unfavorable for their use as magnetic layers in periodic magneto-photonic gratings.

Close to resonances the dynamics become relevant because of the relaxation pro-

cesses involved. This can be included using the Bloch equations for a pair of two-level

systems, one for each polarization state since the magnetic field effectively dupli-

cates a two-level system, the simplest model for a resonance, through the Zeeman

effect. The predominant nonlinear mechanism here is the population saturation

but in certain cases the magnetization also may be modified through photoinduced

realignment of the magnetic moments, for instance through spin-orbit coupling.

This introduces a whole new class of effects and potential applications that are not

considered here.

3. The Induced Magneto-Optical Polarization Density

So far, the discussion of optical and magneto-optical interactions have been per-

formed without entering the explicit form of the involved susceptibilities and po-

larization densities. We will now, from a fundamental starting point, describe in

more detail the formalism underlying the coupled mode theory and further wave

propagation aspects of nonlinear magneto-photonic devices.

As the natural harmonic temporal oscillation is separated from the real-valued

observable fields, by introducing the field envelopes of the electric and magnetic

fields as

E(r, t) = Re[Eω exp(−iωt)] , (3a)

B(r, t) = Re[Bω exp(−iωt)] , (3b)

respectively, and similarly for the electric and magnetic polarization densities P(r, t)

and M(r, t), Maxwell’s equations for wave propagation in a nonlinear magneto-

optical Kerr-medium can be reformulated to yield the wave equation

∇×∇×Eω − (ω/c)2Eω = µ0ω
2Pω , (4a)

∇×∇×Bω − (ω/c)2Bω = −iµ0ω∇×Pω . (4b)
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In Eqs. (4), the electric polarization density Pω = P
(o)
ω + P

(mo)
ω comprises the

all-optical, electric dipolar contribution12,13

P (o)µ
ω = ε0[χ

(ee)
µα Eα

ω + χ
(eeee)
µαβγ Eα

ωEβ
ωEγ∗

ω ] , (5)

with optical susceptibilities12

χ(ee)
µα = χ(ee)

µα (−ω; ω) ,

χ
(eeee)
µαβγ = χ

(eeee)
µαβγ (−ω; ω, ω,−ω) ,

and the magneto-optical contribution

P (mo)µ
ω = ε0[χ

(eem)
µαβ Eα

ωBβ
0 + χ

(eeeem)
µαβγδ Eα

ωEβ
ωEγ∗

ω Bδ
0 ] , (6)

with magneto-optical susceptibilities14,15

χ
(eem)
µαβ = χ

(eem)
µαβ (−ω; ω, 0) ,

χ
(eeeem)
µαβγδ = χ

(eeeem)
µαβγδ (−ω; ω, ω,−ω, 0) .

These tensor expressions for the polarization density, which apply to an arbitrary

point symmetry group of the medium, are to be evaluated under the Einstein con-

vention of summation over repeated indices of Cartesian coordinates.

For locally isotropic media, as considered here, the optical properties of any

point of the medium are left invariant under any rotation or inversion in said point,

keeping the geometry of all externally present fields fixed in space, and the tensor

formulation (5) can be cast into the vectorial form

P(o)
ω = ε0[χ

(ee)
xx Eω + χ(eeee)

xyyx (Eω · Eω)E∗
ω

+ (χ(eeee)
xxxx − χ(eeee)

xyyx )(Eω ·E∗
ω)Eω] .

This polarization density governs the linear electric displacement and optical Kerr-

effect.12 Similarly, the magneto-optical contribution can for isotropic media be cast

into the vectorial form

P(mo)
ω = ε0[χ

(eem)
xyz Eω ×B0 + χ(eeeem)

xyyyz (Eω ·E∗
ω)(Eω ×B0)

+ χ(eeeem)
xxxyz Eω(Eω · (E∗

ω ×B0))

+ χ(eeeem)
xyyzy (Eω ×E∗

ω)(Eω ·B0)] ,

governing the linear Faraday rotation10 and photoinduced Faraday effect.14–16 The

vectorial forms (5) and (6) of the constitutive relations were derived using intrin-

sic permutation symmetry, which always is applicable to nonlinear susceptibili-

ties. In the magneto-optical part of the polarization density, we neglected all terms

which are nonlinear in the static magnetic field, hence omitting the Cotton–Mouton

effect.10 This approximation is justified whenever the static magnetic field is di-

rected mainly in the direction of propagation of the light. If the Cotton–Mouton

effect were to be included in the analysis, the terms
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χ(eemm)
xxyy (B0 ·B0)Eω + (χ(eemm)

xxxx − χ(eemm)
xxyy )(Eω ·B0)B0

should be added to P
(mo)
ω .

It should be noticed that the isotropy of the medium, which is related to point-

symmetry properties under rotation and inversion, is distinct from any homogenity

or inhomogenity of the medium, as being rather a translational property.

The linear terms in the electric polarization density are now collected into

P(L)
ω = ε0[(n

2 − 1)Eω + iEω × g]

where n = (1 + χ
(ee)
xx )1/2 and g = −iχ

(eem)
xyz B0 are the refractive index and the

gyration vector of the medium, both being quantities that spatially vary in space.

Similarly, the nonlinear terms in the polarization density are collected into

P(NL)
ω = ε0[a1(Eω · Eω)E∗

ω + a2(Eω ·E∗
ω)Eω

+ ib1(Eω · E∗
ω)(Eω × g) + ib2Eω(Eω · (E∗

ω × g))

+ ib3(Eω ×E∗
ω)(Eω · g)] ,

where we, for the sake of simplicity, eliminated the static magnetic field B0 in

favor of the gyration vector g. In an optically non-resonant regime, the nonlinear

coefficients ak and bk are all real-valued scalars.

The optical Kerr-effect and the photo-induced Faraday effect have the same

power dependence of the optical field, and in the Faraday configuration, with g

directed along the direction of propagation of the light, they both affect the ro-

tation of the polarization ellipse as the light traverses the medium. In particular,

for elliptically-polarized light, the optical Kerr-effect accounts for the so-called el-

lipse rotation17 of strong light beams. However, the symmetry properties of the

optical Kerr-effect and the photo-induced Faraday effect are distinctly different:

the optical Kerr-effect causes a change in the refractive index that is symmetrical

with respect to the ellipticity of the light, that is to say, with zero rotary power

for linearly polarized light; in contrast, the photoinduced Faraday effect essentially

causes an anti-symmetric change in the refractive index, where one of the circular

polarizations experiences a photo-induced increase in the refractive index, while the

orthogonal polarization simultaneously experiences a decrease.

4. Reciprocity Considerations

A well-known fact in electrodynamic field theory is that the electric field E(r, t),

the electric polarization density P(r, t), and the electric displacement D(r, t) are

all quantities that are left invariant under time reversal. This follows directly from

the experimental fact that the electric charge density is a true scalar, which is left

invariant under space inversion as well as time reversal.11 As a consequence, from

Faraday’s law

∇×E(r, t) = −∂B(r, t)

∂t
,
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and Maxwell–Ampère’s law,

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t) ,

the magnetic induction B(r, t), the magnetization M(r, t), and the magnetic field

H(r, t) must all be pseudo-vectors, being odd quantities under time reversal. Taken

all together, Maxwell’s equations are, in their classical form, always left invariant

under time reversal, regardless of any constitutive relations D[E,P] or H[B,M].

Since “non-reciprocity” is a term that is often used to indicate the breaking of

invariance under time reversal of the wave propagation, considering the fact that

Maxwell’s equations are always left invariant under time reversal, this arises the

question on what we really mean by non-reciprocal wave propagation.

In connection with time reversal, the beam reversal properties of a setup are

often used to illustrate non-reciprocal effects, of which the linear Faraday effect

probably is the most commonly-used example. This illustration is essentially based

on the observation that, in the time-harmonic separation of Eqs. (3), the time

reversal t → −t corresponds to an equivalent wave propagation picture with

(Eω,Bω) → (E∗
ω,B∗

ω), that is to say, with the direction of propagation everywhere

reversed. However, this image of beam reversal only gives the wave propagation

picture, while the interpretation of time reversal properties should be applicable to

any point of the medium of interest. Therefore, we will now recapitulate what we

actually mean by non-reciprocal polarization effects.

From Eq. (5), it is clear that the all-optical constitutive relation is always left

invariant under time reversal, since no pseudo-vectors, such as the magnetic in-

duction of magnetization, are present. In the magneto-optical constitutive relation

given in Eq. (6), however, an even number of pseudo-vectors (the magnetic induc-

tion) occur in each term of the right-hand side, while the left-hand side (a term of

the electric polarization density) is a proper vector.

Since this seems to indicate the obvious contradiction that the right-hand side

of Eq. (6) should change sign under time reversal, while the left-hand side should

be left invariant under the same operation, this is one possible interpretation of

the breaking of time reversal symmetry, or a signature of non-reciprocity. The clue

to this obvious lack of consistency lies in the observation that the susceptibilities

themselves are not necessarily real tensors, and that the optical and magneto-optical

tensors have different transformation properties under time reversal.

The optical and magneto-optical susceptibilities are generally given in terms of

the molecular electric and magnetic dipole moments as12,14

χ(ee)
µα (−ωσ; ω) ∼ pµ

abp
α
ba/D1(ω) , (7a)

χ
(eem)
µαβ (−ωσ; ω1, ω2) ∼ pµ

abp
α
bcm

β
ca/D2(ω1, ω2) , (7b)

χ
(eeee)
µαβγ (−ωσ; ω1, ω2, ω3) ∼ pµ

abp
α
bcp

β
cdp

γ
da/D3(ω1, ω2, ω3) , (7c)

χ
(eeeem)
µαβγδ (−ωσ ; ω1, ω2, ω3, ω4) ∼ pµ

abp
α
bcp

β
cdp

γ
dem

δ
ea/D4(ω1, ω2, ω3, ω4) , (7d)
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where pµ
ab = 〈a|eµ ·p̂|b〉 and mµ

ab = 〈a|eµ ·m̂|b〉 are the matrix elements of the molec-

ular electric and magnetic dipolar operators. In Eqs. (7), Dk(ω1, . . . , ωk) denote

k-order polynomials in the angular frequency arguments ω1, . . . , ωk, also involving

the molecular transition frequencies Ωab and dephasing parameters ±iΓab.
12

In the expressions (7), the matrix elements pµ
ab are components of proper vectors

(electric dipole transitions), while mµ
ab are components of pseudo-vectors (magnetic

dipole transitions). Since any odd-power dependence of the magnetic induction

in Eqs. (6) occur together with an odd-power dependence of the magnetic dipole

elements that appear in the susceptibilities, this means that, in fact, the invariance

under time reversal still holds even for the magneto-optically induced terms of

the polarization density. However, in the constitutive form (6), with the inherent

magnetic dipole transitions concealed in the susceptibilities, the magneto-optical

polarization clearly states the breaking of time-reversal, unless we consider in more

detail the time reversal properties of the medium, and not only the dependence

of the involved fields. This formulation of the overall invariance of the involved

physical processes under time reversal originally stems from that the fact that

the interaction Hamiltonian, taking electric and magnetic dipolar interaction into

account, yields HI = −p̂ · E(r, t) − m̂ · B(r, t). The invariance of the interaction

Hamiltonian under time reversal is a basic foundation of the Onsager reciprocity

relations.18 This is what we imply by the term “non-reciprocity”, with an apparant

breaking of time reversal symmetry due to the form of the constitutive relations,

unless we investigate in more detail the explicit form of the susceptibilities.

In this context, we should also notice that in the Cotton–Mouton effect,

quadratic terms (B0 · B0)Eω and (B0 · Eω)B0 are part of the polarization den-

sity. Since this involves even products of the magnetic induction, this is still a

strictly reciprocal effect within the above described mode of terminology.

The non-reciprocity of the medium has significant impact on the beam reversal

and wave propagation properties of the device. It should be emphasized that the

beam reversal properties, which essentially are given by a spatial inversion, should

not be confused with the time reversal properties.

5. Coupled Mode Theory

The theory described so far is generally applied to the total electric field distribution

inside an arbitrary magneto-photonic crystal. In order to concentrate on the filtering

aspects, we will now, for simplicity, assume that the wave propagation is along a

direction parallel to the linear direction of the externally applied static magnetic

field B0 = B0ez. We will also assume the infinite plane wave approximation to

hold, giving the one-dimensional form of the wave equation (4a) as

∂2Eω

∂z2
+

ω2

c2
[n2(z)Eω + iEω × g(z)] = −µ0ω

2P(NL)
ω . (8)

In the case of a stratified medium, as considered here, with all material parameters

being functions of the longitudinal coordinate z only, the electric dipolar refractive
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index n(z) of the medium is assumed to be modulated around a median value of n0

and median period Λed, as

[n2(z) − n2
0]

n0
= aed(z)Re[exp(iKedz + iϑed(z))] ,

where Ked = 2π/Λed is the magnitude of the median grating vector related to

electric dipolar contributions. For a grating of spatially invariant modulation depth

aed = const., the local period of the refractive index profile is from this representa-

tion given in terms of the spatially varying phase function ϑed(z) as

Λ
(loc)
ed =

Λed[
1 +

Λed

2π

∂ϑed(z)

∂z

] .

Similar to the electric dipolar contributions to the refractive index profile, the

magnetic-dipolar, or magneto-optical, contributions are taken according to the rep-

resentation

[g(z) − g0]

n0
= amd(z)Re[exp(iKmdz + iϑmd(z))] ,

where g(z) = ez · g(z) is the projected gyration vector, and Kmd = 2π/Λmd is the

magnitude of the grating vector related to magnetic dipolar contributions. In the

case with a homogeneous linear magneto-optic effect across the structure, amd(z)

is identically zero.

The optical field is separated into forward and backward propagating compo-

nents as

Eω = e+Af
+(z) exp[i(ωn0/c)(1 − g0/2n2

0)z]

+ e−Af
−(z) exp[i(ωn0/c)(1 + g0/2n2

0)z]

+ e∗+Ab
+(z) exp[−i(ωn0/c)(1 + g0/2n2

0)z]

+ e∗−Ab
−(z) exp[−i(ωn0/c)(1 − g0/2n2

0)z] ,

where Af
± and Ab

± are the left/right circularly-polarized envelopes of the forward

and backward propagating field components, expressed in the circularly-polarized

basis vectors

e+ = (ex + iey)
√

2, e− = (ex − iey)
√

2 .

Whenever backward and forward propagating waves interact, either through di-

rect interaction through a local coupling due to material effects, or due to backscat-

tering or reflection, non-reciprocity enters explicitly. In the following, we will denote

the direction of propagation of light as the longitudinal direction, along the z-axis

or a Cartesian coordinate system, while the x- and y-directions are denoted as

the transverse direction. We will also assume the grating structure to be resonant

mainly in reflection, with the modulation period of linear optical properties close

to twice the magnitude of the wave vector of the propagating light.
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By applying the slowly varying envelope approximation, separating orthogonal

circular polarizations, and subsequently separating phase mismatched terms, the

wave equation (8) becomes

∂Af
±

∂z
− [κ∗

ed(z) exp(−iβ±
edz) ∓ κ∗

md(z) exp(−iβ±
mdz)]Ab

∓

= −µ0ω
2P

(NL)
ω± exp[−i(ωn0/c)(1 ∓ g0/2n2

0)z] (9a)

∂Ab
∓

∂z
− [κed(z) exp(iβ±

edz) ∓ κmd(z) exp(iβ±
mdz)]Af

±

= µ0ω
2P

(NL)
ω± exp[i(ωn0/c)(1 ∓ g0/2n2

0)z] (9b)

where P
(NL)
ω± = e∗± ·P(NL)

ω , and where multiple scales analysis19–21 was applied. In

Eqs. (9) we defined the optical and magneto-optical coupling coefficients

κed(z) = −i(ω/4c)aed(z) exp[−iϑed(z)] ,

κmd(z) = −i(ω/4c)amd(z) exp[−iϑmd(z)] ,

and the corresponding optical and magneto-optical detuning parameters

β±
ed = (2ωn0/c)(1 ∓ g0/2n2

0) − Ked ,

β±
md = (2ωn0/c)(1 ∓ g0/2n2

0) − Kmd .

The coupled mode equations (9) were derived under the assumption that the light

scattering due to the modulated linear refractive index and the gyration constant

dominate over any amplitude change due to nonlinear effects. These coupled mode

equations are analogous to those of linear all-optical Bragg gratings,22,23 though

with the difference that the effective coupling constant as presented here involves

magnetic dipolar interactions as well, splitting the degeneracy between left and

right circularly-polarized modes.

6. Direct Scattering Approach. Perturbation Analysis

Taking into account the explicit form of the nonlinear polarization density P
(NL)
ω± ,

the coupled mode equations (9) can be numerically integrated. However, due to

the intrinsically complex algebraical form of the coupling coefficients, a qualitative

understanding of the magneto-optical effects is aided by considering the linear case,

with small nonlinear effects. For such a case, the coupled mode equations can be

solved by a perturbative approach, to yield general integral solutions, as will now

be outlined.

For the sake of algebraic simplicity, we define the effective coupling coefficient

over the entire grating structure, from z = 0 to z = L, as

κ±
eff(z) = κed(z) exp(iβ±

edz) ∓ κmd(z) exp(iβ±
mdz) ,

including any amplitude and phase modulations of the linear optical and magneto-

optical coefficients.
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By spatially integrating Eq. (9b) from z = 0 to z = L, and using the boundary

condition that no light is input at the end of the grating, Ab
∓(L, ω) = 0, one

obtains an integral expression for Ab
∓(0, ω) in terms of the spatial distribution

of the forward propagating modes. On the other hand, the forward propagating

modes can be expressed as integrals involving the backward propagating modes, by

spatially integrating Eq. (9a). Inserting this expression into the integrated form of

Eq. (9b) then yields

Ab
∓(0)/Af

±(0) = −
∫ L

0

κ±∗
eff (z) dz

− 1

Af
±(0)

∫ L

z=0

∫ z

z′=0

κ±∗
eff (z)κ±

eff(z′)Ab
∓(z′) dz′ dz . (10)

In this expression, the first term on the right-hand side essentially comprises the

superpositioned Fourier transforms of the optical and magneto-optical coupling co-

efficients κed(z) and κmd(z), windowed in the spatial domain by a unitary step

function over the extent of the grating. In this transform interpretation, the detun-

ing coefficients β±
ed and β±

md have the roles of spatial frequencies of the grating. The

remaining term in the right-hand side of Eq. (10) is given in terms of the spatial dis-

tribution of the backward propagating modes, and for a sufficiently weak backward

scattering, this term can be neglected since it involves a second-order dependence

of the coupling coefficient.

Whenever the product of the coupling coefficient and the grating length cannot

be considered as small, the integral forms of Eqs. (9) can be repeatedly applied,

to give an expression for the reflected light in terms of the following generalized

perturbation series, where the nth term is of the order of the coupling coefficient

to the power of 2n − 1,

Ab
∓(0)/Af

±(0)

= −
∫ L

0

κ±∗
eff (z) dz +

∫ L

z1=0

∫ z1

z2=0

∫ L

z3=z2

κ±∗
eff (z1)κ

±
eff(z2)κ

±∗
eff (z3) dz3 dz2 dz1

+ · · · + (−1)n

∫ L

z1=0

∫ z1

z2=0

∫ L

z3=z2

∫ z3

z4=0

∫ L

z5=z4

· · ·
∫ z(2n−3)

z(2n−2)=0

∫ L

z(2n−1)=z(2n−2)

×κ±∗
eff (z1)κ

±
eff(z2)κ

±∗
eff (z3) · · ·κ±

eff(z(2n−2))κ
±∗
eff (z(2n−1))

× dz(2n−1) dz(2n−2) · · · dz3 dz2 dz1

+ O[(κ±
eff )2n] . (11)

By applying Eq. (11) to an arbitrary level of precision, the integral solutions give

the spectral response of an arbitrary spatial distribution of the refractive index and

gyration constant.
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The above described direct scattering approach mainly applies to linear

magneto-photonic structures, with the coupling coefficients being independent of

the intensity of the optical field. However, for qualitative arguments, the refractive

index n(z) and gyration constant g(z), as they appear in the coupling coefficients

and detuning parameters, can be replaced by their field-corrected forms n(I, z)

and g(I, z). By using the field-corrected forms, however, the perturbation series (11)

depends on the spatial, intra-grating intensity distribution, which a priori is not

known. By repeatedly applying the perturbation series, with the intensity distri-

bution in the linear optical regime as initial profile, one can iteratively obtain the

full description of the light scattering and spectral response in the nonlinear optical

regime as well.

7. Transfer Matrix Formulation

The direct scattering method for solving the coupled mode equations (9) can be

considered as a semi-numerical approach, since it is applicable not only to numerical

simulations, but also to finding analytical solutions as well. For many applications,

however, the method of the transfer matrix formalism is preferable, such as in cases

where the structure of interest is composed of a number of locally homogeneous

layers.

In the transfer matrix formulation, the magneto-photonic device is discretized

into a finite number of locally homogeneous layers, over which known solutions to

the homogeneous wave equation are applied for wave propagation. This stacked-

layer model is schematically shown in Fig. 2. As a benefit of the transfer matrix

formalism, in contrast to the series expansion of the direct scattering approach,

gratings of arbitrary strength can be analyzed, and multiple scattering effects that

occur inside the grating are explicitly included throughout the analysis. For a suf-

ficiently large number of thin, locally homogeneous layers, the discretized model

provided by the transfer matrix is also applicable to continuously modulated dis-

tributions of the index of refraction and magneto-optical gyration constant.

The transfer matrix formalism involves products of two classes of matrices: one

class for the wave propagation across the locally homogeneous layers in the model

of the device, and one class for the infinitesimal transition over plane interfaces

between different layers. We construct a four-dimensional vector

Ek(z) =
(
Ef

k+
(z)Ef

k−
(z)Eb

k+
(z)Eb

k−
(z)

)T

for the local optical fields inside the kth layer of the structure, defined over zk <

z < zk+1, k = 1, 2, . . . , N − 1. We also define E0 and EN to be the corresponding

incident and transmitted fields, taken immediately to the left and right of the first

and Nth layer interfaces, respectively.

The optical fields immediately to the left and right of the kth interface, at

z = z−k and z = z+
k respectively, are then related through

Ek(z+
k ) = TkEk−1(z

−
k ) , (12)
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Fig. 1. Schematic figure of a continuous refractive index distribution n(z) of the stratified
magneto-photonic crystal.
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Fig. 2. Schematic figure of the stacked model structure as used in the transfer matrix formulation.
The model comprises N interfaces in a total of N −1 locally homogeneous magneto-optical layers.

where the transfer matrix governing the field transition over the interface is

given as

Tk =




1/τ ′
k−

0 0 ρ′k−
/τ ′

k−

0 1/τ ′
k+

ρ′k+
/τ ′

k+
0

0 −ρk−/τ ′
k+

1/τ ′
k+

0

−ρk+/τ ′
k−

0 0 1/τ ′
k−


 ,

with elements given in terms of the reflection and transmission coefficients, including

linear magneto-optical interactions,

τk± =
2(nk−1 ± g′k−1)

nk−1 + nk ± (g′k−1 + g′k)
,

τ ′
k±

=
2(nk ∓ g′k)

nk−1 + nk ∓ (g′k−1 + g′k)
,

ρk± =
nk−1 − nk ± (g′k−1 − g′k)

nk−1 + nk ± (g′k−1 + g′k)
= −ρ′k∓

,



April 8, 2004 14:4 WSPC/145-JNOPM 00180

Nonlinear Magneto-Optical Bragg Gratings 147

with the notation g′
k = −gk/2nk. Here, τk± are the amplitude transmission co-

efficients for left/right circularly-polarized waves propagating in the positive z-

direction, while ρk± are the analogous amplitude reflection coefficients of the same

wave components. Primed quantities are similarly related to the field quantities of

opposite direction of propagation.

As a signature of the non-absorptive interface conditions between the layers, the

reflection and transmission coefficients of the elements of Tk are related through

the Stokes relations11 ρk± = −ρ′k∓
and τk±τ ′

k∓
= 1 − ρ2

k±
, which were also used in

the formulation of Eq. (12).

The relation between the optical field components in one end of a layer and the

components in the other end of the layer is given as

Ek(z−k+1) = PkEk(z+
k ) , (13)

where

Pk = exp[i(ω∆k/c)] exp[diag(nk+, nk−,−nk−,−nk+)]

is the [4×4] exponential eikonal matrix, governing the wave propagation in the kth

locally homogeneous layer of the structure. In the matrix Pk, nk± = nk(1∓gk/2n2
k)

are the refractive indices experienced by circularly-polarized optical fields in the

kth layer, and ∆k = zk+1 − zk are the corresponding layer thicknesses. In Eqs. (12)

and (13), the experienced refractive indices nk± are allowed to be complex-valued

quantities nk± = n′
k± + in′′

k±, where positive imaginary parts n′′
k± correspond to

energy absorption in the medium.

By subsequently applying Eqs. (12) and (13), the incident and transmitted

optical fields of the magneto-optical Bragg grating are then related through

EN = T̃E0 , (14)

where

T̃ = TNPN−1TN−1PN−2 · · ·P1T1

is the total transfer matrix of the compound magneto-photonic structure.

As in the direct scattering approach, the above described method applies mainly

to linear magneto-photonic structures, for which the state of all of the partial trans-

fer matrices Pk and Tk are independent of the state of light. Whenever the refractive

index and gyration constant are replaced by their field-corrected quantities, the par-

tial transfer matrices become dependent on the local intensity and ellipticity of the

light, and in particular the calculation of the phase-affecting propagation matrices

Pk(I) becomes crucial.

Since one a priori does not know the intra-grating spatial distribution of the

light intensity and polarization state, one cannot in general start the analysis at the

incoupling end of the grating. Due to the inherently multivalued nature of nonlinear

optical devices with optical feedback, and also due to the fact that the backward

propagating light at the end of the grating is zero, the transfer matrix method is
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instead straightforwardly applied to the inverse problem, that is to say, the problem

of calculating the input light wave that corresponds to a given transmitted wave.

In this case, the transfer matrix method yields an inverse formulation of Eq. (14),

where we first of all initialize the transmitted field vector

EN =
(
Ef

N+
(z+

N ) Ef
N−

(z+
N ) 0 0

)T

.

Using this vector as initial parameter, the field in the (N − 1)th layer can then be

calculated by first using the inverse formulation of Eq. (12) as

EN−1(z
−
N ) = T

−1
N EN (z+

N ) , (15)

which for non-absorbing locally homogeneous layers gives the intensity IN−1 and

ellipticity εN−1 of the polarization state of the light in the (N − 1)th layer. In

Eq. (15), the reflection coefficients involved in the elements of T
−1
N can be calculated

using the linear refractive indices and gyration constants. Using the information of

the intensity and ellipticity, the light wave at the beginning of the (N − 1)th layer

can then be calculated using the inverse and field-corrected form of Eq. (13),

EN−1(z
+
N−1) = P

−1
N−1(IN−1, εN−1)EN−1(z

−
N ) . (16)

By subsequently applying Eqs. (15) and (16), we can finally calculate the initial

field E0 that corresponds to the given transmitted field EN . This formulation of the

inverse problem provides a powerful tool that is perfectly adequate for qualitative as

well as quantitative analysis of an implementation of a certain design of a magneto-

photonic structure.

8. Binary Structures

For grating structures composed of locally homogeneous layers of altering optical

and magneto-optical coefficients, denoted here as binary magneto-photonic struc-

tures, the design of a setup is considerably simplified, since it allows us to apply a

well-known analytical theory and arguments of thin-film theory.24

The design procedure is illustrated here with a binary structure consisting of

two stacked distributed feedback structures, each one comprising layers of altering

refractive index nl = 1.8 and nh = 2.4. In this example, the high index medium

also possesses non-zero magneto-optical coefficients. The two stacks enclose a centre

layer, also denoted as the “defect” layer, which for simplicity, is also composed of the

high index medium. The spatial index profile of the compound structure is shown

in Fig. 3. Working in resonant reflection, using the terminology as introduced in

the transfer matrix formalism of the previous section, the alternating layers are

designed with respective layer thicknesses of ∆k = λc/4nk, where λc = 900 nm

is the design resonance vacuum wavelength in the absence of the static magnetic

field. The peak reflectance of such a structure in free space, with M pairs of stacked

layers and with magnetic field switched off, is24

R =

[
1 − (nh/nl)

2M

1 + (nh/nl)2M

]2

,
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Fig. 3. Spatial modulation of linear refractive index n(z) and gyration constant g(z), for a struc-
ture consisting of N − 1 = 25 alternating layers with indices nh = 2.4 and nl = 1.8. The structure
is optimized for resonance at λc = 900 nm vacuum wavelength, with a center layer thickness
of 9λc/2nh, and with surrounding mirror structures composed of alternating quarter-wavelength
layers. The surrounding stacks of six layer pairs each provide an effective maximum reflectance of
about 88.1 percent.

and for a moderate number of M = 6 pairs, each of the enclosing stacks have

respective peak reflectances of approximately 88.1 percent. In order to create a

composite structure with narrow transmission peaks, the center layer is designed

to be resonant at the same centre wavelength λc at which the surrounding binary

stacks are resonant in reflection. The resonance condition for the center layer of

thickness ∆13 yields 2πnh∆13/λc = mπ, and we choose the resonance order m = 9,

hence giving a center layer thickness of ∆13 = 9λc/2nh. In total, this gives an

overall thickness of L = 4.31 µm of the structure.

In the linear optical regime this structure will have a unity maximum transmit-

tance at exact cavity resonances, since the enclosing stacks are balanced with an

equal reflectance. In the spectral vicinity of the center wavelength, for which the

reflectance of the surrounding stacks is still high, the minimum transmission can be

estimated from classical Fabry–Pérot theory to yield Tmin = (1 − R)2/(1 + R)2 ≈
0.0040, hence corresponding to an extinction ratio of −10 log(Tmin/Tmax) ≈ 24 dB

between maximum and minimum transmittance. The transmittance as a function

of vacuum wavelength is shown in Fig. 4, which was generated using the transfer

matrix formalism as described in Sec. 7.

Expressed in terms of the refractive indices experienced by the circularly-

polarized modes, the Faraday rotation angle, measured clockwise around the axis

of the direction of propagation of the light, is

ΦF =
ω

2c
(n+ − n−) =

ωg0

2n0c
.
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Fig. 4. Transmission characteristics of the magneto-optical Bragg grating as shown in Fig. 3,
with the magnetic field switched off.
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Fig. 5. Transmission characteristics of the same magneto-optical Bragg grating as in Fig. 4,
but with the magnetic field switched on. Solid/dashed lines show the transmission for left/right
circularly-polarized input light.
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For a modest value of ΦF = 0.5 deg/µm around λc, this gives a value of the

gyration constant as g0 = 6.0 × 10−3. In terms of the differential refractive index

change experienced by circularly-polarized modes inside the high index medium,

this corresponds to n± − nh = ∓ 2.6 × 10−4. This differential change in refractive

index has its main impact in a differential change of the Bragg resonances of the

structure, with the transmission peaks of right circular polarization shifting to

the right in the spectrum, while those of left circular polarization experiencing

the same shift but in the opposite direction. This lifting of the degeneracy of the

Bragg resonances is shown in Fig. 5, which was also generated using the transfer

matrix formalism.

Whenever the surrounding stacked layers around the center one possess non-

zero magneto-optical coefficients, the exact displacement of the resonance peaks

of the structure generally must be calculated using, for example, the transfer ma-

trix formalism. In particular, the non-reciprocity causes a slight increase in index

contrast with accompanying increase in reflection for one of the circularly-polarized

modes, while the orthogonal mode simultaneously experiences a decrease. However,

whenever the cavity resonance of the center layer is comparatively strong, as com-

pared to the distributed resonances of the surrounding stacks, one may estimate

the displacement of the center resonance from classical Fabry–Pérot theory as

∆λc ≈ g0λc/2n2
0 .

With the previously chosen parameters, an estimation of the differential shift of the

resonance peaks of left and right circular polarizations is ∆λc = 0.47 nm, or a peak

separation of 0.94 nm.

For moderate magneto-optical coefficients, the peak separation is comparatively

small; however, for structures possessing a sufficiently high cavity finesse, for which

the half maximum full-width of the peaks are small, the small change in Bragg

resonance has a dramatic effect on the intra-grating intensity distribution, as shown

in Fig. 6.

Finally, we will make a few notes on the nonlinear behavior of the device under

influence of strong optical fields. As an explicit signature of the non-reciprocity of

the medium, nonlinear magneto-optical Fabry–Pérot cavities are asymmetrical in

their ellipticity dependence of transmission.15 In particular, by choosing a vacuum

wavelength of operation in such a way that one of the circular polarization states is

suppressed, a boosting of the asymmetrical behavior appears in a nonlinear optical

regime.

The interpretation of the polarization state dependence of transmission prop-

erties is aided by the introduction of the Stokes parameters,11 which for the input

optical field yield

S0 = [|Ef
+|2 + |Ef

−|2]z=0, S1 = 2 Re[Ef∗
+ Ef

−]z=0 ,

S3 = [|Ef
+|2 − |Ef

−|2]z=0, S2 = 2 Im[Ef∗
+ Ef

−]z=0 ,
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Fig. 6. The intra-grating intensity evolution of left circularly-polarized forward propagating
modes inside the magneto-photonic structure, If = n(z)ε0c|Af

+(z)|2/2, with the static magnetic
field switched on. The curves are calculated for vacuum wavelengths of (a) λ0 = 898.0 nm,
(b) λ0 = 899.0 nm, and (c) λ0 = 900.0 nm (solid curves). The dashed curves (d) and (e) show the
corresponding intensity evolution at minimum and maximum transmittance, respectively.
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Fig. 7. Transmitted intensity Itr = ε0cW0/2 as a function of input intensity Iin = ε0cS0/2 and
normalized ellipticity εin = S3/S0, evaluated at a vacuum wavelength of λ0 = 900.55 nm.

and similarly for the transmitted field

W0 = [|Ef
+|2 + |Ef

−|2]z=L, W1 = 2 Re[Ef∗
+ Ef

−]z=L ,

W3 = [|Ef
+|2 − |Ef

−|2]z=L, W2 = 2 Im[Ef∗
+ Ef

−]z=L ,

where Ef
± = e∗± · Ef

ω are the forward propagating components of the electric field

Eω.
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In Fig. 7, the transmitted intensity Itr = ε0cW0/2 is shown as a function of

the input intensity Iin = ε0cS0/2 and the input normalized ellipticity εin = S3/S0.

In the figure, the normalized input ellipticity ranges from εin = −1 (right circular

polarization) via εin = 0 (linear polarization) to εin = +1 (left circular polarization),

while the intensity ranges up to an input intensity corresponding to a photo-induced

refractive index change of maximum

δn =
3

8n0
χ(eeee)

xxxx |Eω|2 = 1.40× 10−4 .

In the figure, the asymmetrical impact of the non-reciprocity on the transmission

is clearly present, and as the analysis is extended to more confined cavity effects,

for structures with an even higher finesse, optically multistable solutions appear

as well.

9. Conclusions

In this paper, we have focused on a review of the theoretical tools and fundamental

concepts of magneto-photonic structures. Material issues and configurations were

discussed, and the fundamental concepts of photo-induced modification of linear

optical and magneto-optical properties of matter were reviewed. The coupled mode

equations governing wave propagation inside magneto-photonic structures were de-

rived from a first-principles approach, and their solution in terms of a general

perturbation series, yielding integral solutions, was described. Moreover, the trans-

fer matrix formalism as applied to these structures was reviewed, and issues of the

method of solving the inverse problem of nonlinear magneto-photonic crystals was

discussed. Finally, as an illustration of the application of the theoretical tools dis-

cussed, a binary structure with a center defect layer was analyzed in transmittance

by means of the transfer matrix formalism.

The key role played by the non-reciprocity inherent in these magneto-photonic

structures is strikingly evidenced in their distinctly different characteristics and

behavior with respect to those of the photonic ones; thus these are different for

left and right circularly-polarized light beams and also for forward and backward

propagating beams of same circular polarization state. This indicates that these

structures could efficiently be used for circular polarization state discrimination

and filtering, spatial direction recognition and velocity sensitivity along with en-

hancing the performances of other more straightforward applications such as iso-

lators, modulators and sensors. With the enhancement of the field intensity be-

cause of the confinement in these structures we also expect the nonlinear regime

to become accessible and lead to photoinduced modification and control of their

characteristics.
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