
§1 SGFILTER INTRODUCTION 1

17 December 2011 at 00:56

1. Introduction.

SGFilter

A stand-alone implementation of the Savitzky–Golay smoothing filter.

(Version 1.6 of December 4, 2011)

Written by Fredrik Jonsson

0 0.5 1 1.5 2 2.5
−4

−2

0

2

4

6

x

y

2 INTRODUCTION SGFILTER §1

This document was automatically extracted from the CWEB master source code for the SGFILTER program
and typeset in the Computer Modern typeface using plain TEX and METAPOST. The source code and doc-
umentation of this program is electronically available at http://jonsson.eu/programs/cweb/sgfilter/ .

Copyright c© Fredrik Jonsson 2011

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photo-copying, recording, or otherwise,
without the prior consent of the author. Non-commercial copying welcome.

Printed on 17 December 2011, at 00:56

TEX is a trademark of the American Mathematical Society

§2 SGFILTER THE SAVITZKY–GOLAY SMOOTHING FILTER 3

2. The Savitzky–Golay smoothing filter. The Savitzky–Golay smoothing filter was originally pre-
sented in 1964 by Abraham Savitzky† and Marcel J. E. Golay‡ in their paper “Smoothing and Differentiation
of Data by Simplified Least Squares Procedures”, Anal. Chem., 36, 1627–1639 (1964). Being chemists and
physicists, at the time of publishing associated with the Perkin–Elmer Corporation (still today a reputable
manufacturer of equipment for spectroscopy), they found themselves often encountering noisy spectra where
simple noise-reduction techniques, such as running averages, simply were not good enough for extracting
well-determined characteristica of spectral peaks. In particular, any running averaging tend to flatten and
widening peaks in a spectrum, and as the peak width is an important parameter when determining relaxation
times in molecular systems, such noise-reduction techniques are clearly non-desirable.
The main idea presented by Savitzky and Golay was a work-around avoiding the problems encountered with

running averages, while still maintaining the smoothing of data and preserving features of the distribution
such as relative maxima, minima and width. To quote the original paper on the target and purpose:

“This paper is concerned with computational methods for the removal of the random
noise from such information, and with the simple evaluation of the first few derivatives of
the information with respect to the graph abscissa. [. . .] The objective here is to present
specific methods for handling current problems in the processing of such tables of analytical
data. The methods apply as well to the desk calculator, or to simple paper and pencil
operations for small amounts of data, as they do to the digital computer for large amounts
of data, since their major utility is to simplify and speed up the processing of data.”

† Abraham Savitzky (1919–1999) was an American analytical chemist. (Wikipedia)
‡ Marcel J. E. Golay (1902–1989) was a Swiss-born mathematician, physicist, and information theorist, who
applied mathematics to real-world military and industrial problems. (Wikipedia)

4 THE SAVITZKY–GOLAY SMOOTHING FILTER SGFILTER §3

3. The work-around presented by Savitzky and Golay for avoiding distortion of peaks or features in their
spectral data is essentially based on the idea to perform a linear regression of some polynomial individually
for each sample, followed by the evaluation of that polynomial exactly at the very position of the sample.
While this may seem a plausible idea, the actual task of performing a separate regression for each point
easily becomes a very time-consuming task unless we make a few observations about this problem. However
(and this is the key point in the method), for the regression of a polynomial of a finite power, say of an
order below 10, the coefficients involved in the actual regression may be computed once and for all in an
early stage, followed by performing a convolution of the discretely sampled input data with the coefficient
vector. As the coefficient vector is significantly shorter than the data vector, this convolution is fast and
straightforward to implement.
The starting point in deriving the algorithm for the Savitzky–Golay smoothing filter is to consider a

smoothing method in which an equidistantly spaced set of M samples fn, n = 1, . . . ,M are linearly combined
to form a filtered value hk according to†

hk =

nR∑

j=−nL

cjfk+j , (1)

where nL is the number of samples “to the left” and nR the number of samples “to the right” of the centre
index k. Notice that the running average smoothing corresponds to the case where all coefficients cn are
equal, with cn = 1/(nL + nR + 1). The idea of the Savitzky–Golay filter is, however, to find the set of cn
which better preserves the shape of features present in the sampled profile. The approach is to make a linear
regression of a polynomial to the nL + nR + 1 samples in the window around sample k, and then evaluating
this polynomial at that very sample, for all k from 1 to M .
We consider the regression of an m:th degree polynomial

p(x) = a0 + a1(x− xk) + a2(x− xk)
2 + . . .+ am(x− xk)

m (2)

to the set of nL samples to the left and nR to the right of sample fk, including the sample inbetween.
Evaluating this polynomial at x = xk is particularly easy, as we at that point simply have p(xk) = a0. The
linear regression of this polynomial to the samples fk+j , with −nL ≤ j ≤ nR, means that we look for the
least-square approximated solution to the linear system of nL + nR + 1 equations

p(xk−nL
) = a0 + a1(xk−nL

− xk) + a2(xk−nL
− xk)

2 + . . .+ am(xk−nL
− xk)

m ≈ fk−nL
,

...
...

p(xk−1) = a0 + a1(xk−1 − xk) + a2(xk−1 − xk)
2 + . . .+ am(xk−1 − xk)

m ≈ fk−1,

p(xk) = a0 ≈ fk

p(xk+1) = a0 + a1(xk+1 − xk) + a2(xk+1 − xk)
2 + . . .+ am(xk+1 − xk)

m ≈ fk+1,

...
...

p(xk+nR
) = a0 + a1(xk+nR

− xk) + a2(xk+nR
− xk)

2 + . . .+ am(xk+nR
− xk)

m ≈ fk+nR
,

(3)

† More generally, Eq. (‘eq:10’) can be interpreted as a discretized version of the convolution between a
kernel c(x) and a function f(x),

h(x) =

∫ ∆R

−∆L

c(s)f(x+ s) ds →

nR∑

j=−nL

cjfk+j .

Notice, however, the different sign of s as compared to the standard form of the convolution integral in
mathematics, where the argument of the function usually yields “f(x− s)”.

§3 SGFILTER THE SAVITZKY–GOLAY SMOOTHING FILTER 5

which (under the assumption that nL + nR + 1 > m+ 1) provides an overdetermined system for the m+ 1
coefficients aj which can be expressed in matrix form as

A · a ≡

1 (xk−nL
− xk) (xk−nL

− xk)
2 · · · (xk−nL

− xk)
m

...
...

...
1 (xk−1 − xk) (xk−1 − xk)

2 · · · (xk−1 − xk)
m

1 0 0 · · · 0
1 (xk+1 − xk) (xk+1 − xk)

2 · · · (xk+1 − xk)
m

...
...

...
1 (xk+nR

− xk) (xk+nR
− xk)

2 · · · (xk+nR
− xk)

m

︸ ︷︷ ︸

[(nL+nR+1)×(m+1)]

a0
a1
a2
...

am

︸ ︷︷ ︸

[(m+1)×1]

=

fk−nL

...
fk−1

fk
fk+1

...
fk+nR

︸ ︷︷ ︸

[(m+1)×1]

≡ f . (4)

The least squares solution to Eq. (4) is obtained by multiplying its left- and right-hand sides by the transpose
of the system matrix A, followed by solving the resulting [(m+ 1)× (m+ 1)]-system of linear equations for
a,

AT · (A · a) = (AT ·A) · a = AT · f ⇔ a = (AT ·A)−1 · (AT · f) (5)

Recapitulate that what we here target is the evaluation of p(xk) = a0, which according to Eqs. (2) and (5)
is equivalent to evaluating the first (“zero:th”) row of the solution for a, or

p(xk) = a0 =
[

(AT ·A)−1

︸ ︷︷ ︸

[(m+1)×(m+1)]

· (AT · f)
︸ ︷︷ ︸

[(m+1)×1]

]

{row 0}
(6)

So, having arrived at this result for the regression, we clearly have a solution for a0 depending on the actual
function values fk+j in the vicinity of sample fk. Doesn’t this mean that we nevertheless need to repeat the
regression for every single sample to be included in the smoothing? Moreover, how does the result presented
in Eq. (6) relate to the original mission, which we recapitulate was to find a general way of computing the
coefficients cj in the kernel of the convolution in Eq. (1)?
The answer to these questions lies in expanding Eq. (6) to yield the expression for the first (“zero:th”)

row as
p(xk) = a0 =

[
(AT ·A)−1 · (AT · f)

]

{row 0}

=

m+1∑

j=1

[
(AT ·A)−1

]

0j

[
AT · f

]

j

=
m+1∑

j=1

[
(AT ·A)−1

]

0j

m+1∑

k=1

[
AT

]

jk

[
f
]

k

(7)

and observing that the n:th coefficient cn is obtained as equal to the coefficient a0 whenever f is replaced by
the unit vector en (with all elements zero except for the unitary n:th element). Hence

cn =

m+1∑

j=1

[
(AT ·A)−1

]

0j

m+1∑

k=1

[
AT

]

jk

[
en

]

k

=
m+1∑

j=1

[
(AT ·A)−1

]

0j

m+1∑

k=1

[
AT

]

jk
δnk

=

m+1∑

j=1

[
(AT ·A)−1

]

0j

[
AT

]

jn

=
m+1∑

j=1

[
(AT ·A)−1

]

0j
Anj

(8)

6 THE SAVITZKY–GOLAY SMOOTHING FILTER SGFILTER §3

This concludes the derivation of the coefficients in the Savitzky–Golay filter, which may be computed once
and for all in the beginning and afterwards used as the (for any practical purposes short) kernel cj in the
convolution described by Eq. (1).

4. In 2000, editors James Riordon, Elizabeth Zubritsky, and Alan Newman of Analytical Chemistry made
a review article of what they had identified as the top-ten seminal papers in the history of the journal, based
on the number of citations. Among the listed papers, of which some were written by Nobel-laureates-to-be,
the original paper by Savitzky and Golay makes a somewhat odd appearance, as it not only concerns mainly
numerical analysis, but also because it actually includes Fortran code for the implementation. The review
article† concludes the discussion of the Savitzky–Golay smoothing filter with a reminiscence by Abraham
Savitzky about the work:

“In thinking about why the technique has been so widely used, I’ve come to the following
conclusions. First, it solves a common problem–the reduction of random noise by the well-
recognized least-squares technique. Second, the method was spelled out in detail in the
paper, including tables and a sample computer subroutine. Third, the mathematical basis
for the technique, although explicitly and rigorously stated in the article, was separated
from a completely nonmathematical explanation and justification. Finally, the technique
itself is simple and easy to use, and it works.”

5. As a final remark on the Savitzky–Golay filtering algorithm, a few points on the actual implementation
of the convolution need to be made. While the SGFILTER program relies on the method for computation
of the Savitzky–Golay coefficients as presented in Numerical Recipes in C, 2nd Edn (Cambridge University
Press, New York, 1994), it must be emphasized that the suggestion there presented for the convolution,
which is to apply the convlv routine of Numerical Recipes in C, is significantly increasing the complexity and
memory consumption in the filtering. In particular, the convlv routine in turn relies on consistent calls to
the twofft routine, which in order to deliver proper data needs to be supplied with a return vector of twice
the size of the input vector. In addition, convlv requires the size of the input vector to be of an integer power
of two (say, M = 1024, 4096, etc.), which may be acceptable for one-off tests but is a rather inconvenient
limitation for any more general applications.
Whether the SGFILTER program should employ the convolution engine supplied by the convlv routine

(recommended in Numerical Recipes in C) or the direct convolution as implemented in the sgfilter routine
(recommended by me) is controlled by the CONVOLVE_WITH_NR_CONVLV definition in the sgfilter.h header
file. With reference to the above issues with convlv , I strongly advise keeping the default (0) setting for
CONVOLVE_WITH_NR_CONVLV.

† Available at http://pubs.acs.org/doi/pdf/10.1021/ac002801q

§6 SGFILTER REVISION HISTORY OF THE PROGRAM 7

6. Revision history of the program.

2006-01-18 [v.1.0] <fj@phys.soton.ac.uk>
First properly working version of the SGFILTER program.

2006-01-20 [v.1.1] <fj@phys.soton.ac.uk>
Added the test case for Savitzky–Golay filtering, modeling an underlying function g(x)
with superimposed Gaussian noise as

f(x) = cos(3x) sin2(x3) + 4

4∑

k=1

exp(−(x− xk)
2/w2

k)

︸ ︷︷ ︸

g(x)

+V u(x)

︸ ︷︷ ︸

noise

where u(x) is a normally distributed stochastic variable of mean zero and unit variance,
V is the local variance as specified arbitrarily, and the remaining parameters (xk, wk)
are the positions and widths of four Gaussian peaks superimposed onto the otherwise
trigonometric expression for the underlying function.

2006-01-21 [v.1.2] <fj@phys.soton.ac.uk>
Changed the streaming of output (filtered) data so that the stdout stream now is directed
to file whenever −o or −outputfile options are present at the calling command line.

2006-05-06 [v.1.3] <fj@phys.soton.ac.uk>
Added an introductory section documenting the derivation of the Savitzky–Golay filter
as such. Always nice to have at hand when it comes to actually understanding why
certain parameters in the filtering need to be in certain ranges. Also added automatic
support for extracting the number of input samples automatically from the input file,
hence making the −M and −−num_samples option obsolete.

2006-05-06 [v.1.4] <fj@phys.soton.ac.uk>
Replaced the convolution from the previously used convlv routine to a brute-force but
more economical one, which now does not rely on the input data being a set of 2N

samples for some N . However, I have chosen to keep the old implementation, which can
be re-applied simply by changing the definition of CONVOLVE_WITH_NR_CONVLV to “(1).”

2009-11-01 [v.1.5] <http://jonsson.eu>
Included the example.c file in the CWEB source of SGFILTER, for automatically is
generated from the master CWEB source when passed through CTANGLE. A very nifty
way indeed for keeping updated test cases.

2011-12-04 [v.1.6] <http://jonsson.eu>
In the block concerned with the redirection of stdout when delivering filtered data, I
found strange behaviour when executing SGFILTER under Windows. What happens
is that any redirection of stdout back to terminal output in Windows naturally must
be done in a different way than with the freopen ("/dev/tty", "a", stdout) which is
accepted by OS X (Free BSD), Linux, or any other UNIX-like platforms. Hence, I
simply added a (primitive) check on the platform type in the header file.

8 COMPILING THE SOURCE CODE SGFILTER §7

7. Compiling the source code. The program is written in CWEB, generating ANSI C (ISO C99)
conforming source code and documentation as plain TEX-source, and is to be compiled using the sequences
as outlined in the Makefile listed below. For general information on literate programming, CTANGLE, or
CWEAVE, see http://www.literateprogramming.com .

#

Makefile designed for use with ctangle, cweave, gcc, and plain TeX.

#

Copyright (C) 2002-2011, Fredrik Jonsson <http://jonsson.eu>

#

The CTANGLE program converts a CWEB source document into a C program

which may be compiled in the usual way. The output file includes #line

specifications so that debugging can be done in terms of the CWEB source

file.

#

The CWEAVE program converts the same CWEB file into a TeX file that may

be formatted and printed in the usual way. It takes appropriate care of

typographic details like page layout and the use of indentation, italics,

boldface, etc., and it supplies extensive cross-index information that it

gathers automatically.

#

CWEB allows you to prepare a single document containing all the informa-

tion that is needed both to produce a compilable C program and to produce

a well-formatted document describing the program in as much detail as the

writer may desire. The user of CWEB ought to be familiar with TeX as well

as C.

#

PROJECT = sgfilter

CTANGLE = ctangle

CWEAVE = cweave

CC = gcc

CCOPTS = -O2 -Wall -ansi -std=iso9899:1999 -pedantic

LNOPTS = -lm

TEX = tex

DVIPS = dvips

DVIPSOPT = -ta4 -D1200

PS2PDF = ps2pdf

METAPOST = mpost

all: $(PROJECT) $(PROJECT).pdf

$(PROJECT): $(PROJECT).o

$(CC) $(CCOPTS) -o $(PROJECT) $(PROJECT).o $(LNOPTS)

$(PROJECT).o: $(PROJECT).c

$(CC) $(CCOPTS) -c $(PROJECT).c

$(PROJECT).c: $(PROJECT).w

$(CTANGLE) $(PROJECT) $(PROJECT).c

§7 SGFILTER COMPILING THE SOURCE CODE 9

$(PROJECT).pdf: $(PROJECT).ps

$(PS2PDF) $(PROJECT).ps $(PROJECT).pdf

$(PROJECT).ps: $(PROJECT).dvi

$(DVIPS) $(DVIPSOPT) $(PROJECT).dvi -o $(PROJECT).ps

$(PROJECT).dvi: $(PROJECT).tex

$(TEX) $(PROJECT).tex

$(PROJECT).tex: $(PROJECT).w

$(CWEAVE) $(PROJECT)

clean:

-rm -Rf $(PROJECT) * *.c *.h *.o *.exe *.dat *.pdf *.mp *.trj *.mpx

-rm -Rf *.tex *.aux *.log *.toc *.idx *.scn *.dvi *.ps *.1 *.eps

archive:

make -ik clean

tar --gzip --directory=../ -cf ../$(PROJECT).tar.gz $(PROJECT)

This Makefile essentially executes two major calls. First, the CTANGLE program parses the CWEB source
file sgfilter.w to extract a C source file sgfilter.c which may be compiled into an executable program
using any ANSI C conformant compiler. The output source file sgfilter.c includes #line specifications
so that any debugging conveniently can be done in terms of line numbers in the original CWEB source file
sgfilter.w. Second, the CWEAVE program parses the same CWEB source file sgfilter.w to extract a
plain TEX file sgfilter.tex which may be compiled into a PostScript or PDF document. The document
file sgfilter.tex takes appropriate care of typographic details like page layout and text formatting, and
supplies extensive cross-indexing information which is gathered automatically. In addition to extracting the
documentary text, CWEAVE also includes the source code in cross-referenced blocks corresponding to the
descriptors as entered in the CWEB source code.
Having executed make (or gmake for the GNU enthusiast) in the same directory where the files sgfilter.w

and Makefile are located, one is left with the executable file sgfilter, being the ready-to-use compiled pro-
gram, and the PostScript file sgfilter.ps (or PDF file sgfilter.pdf) which contains the full documenta-
tion of the program, that is to say the document you currently are reading. Notice that on platforms running
any operating system by Microsoft, the executable file will instead automatically be named sgfilter.exe.
This convention also applies to programs compiled under the UNIX-like environment CYGWIN.

10 RUNNING THE PROGRAM SGFILTER §8

8. Running the program. The program is entirely controlled by the command line options supplied
when invoking the program. The syntax for executing the program is

sgfilter [options]

where options include the following, given in their long as well as their short forms (with prefixes ‘−−’ and
‘−’, respectively):

−−inputfile, −i 〈input filename〉
Specifies the raw, unfiltered input data to be crunched. The input file should describe the
input as two columns containing x- and y-coordinates of the samples.

−−outputfile, −o 〈output filename〉
Specifies the output file to which the program should write the filtered profile, again in a
two-column format containing x- and y-coordinates of the filtered samples. If this option
is omitted, the generated filtered data will instead be written to the console (terminal).

−nl 〈nL〉
Specifies the number of samples nL to use to the “left” of the basis sample in the regression
window (kernel). The total number of samples in the window will be nL+ nR+ 1.

−nr 〈nR〉
Specifies the number of samples nR to use to the “right” of the basis sample in the
regression window (kernel). The total number of samples in the window will be nL+nR+1.

−m 〈m〉
Specifies the order m of the polynomial p(x) = a0+a1(x−xk)+a2(x−xk)

2+ . . .+am(x−
xk)

m to use in the regression analysis leading to the Savitzky–Golay coefficients. Typical
values are between m = 2 and m = 6. Beware of too high values, which easily makes the
regression too sensitive, with an oscillatory result.

−ld 〈lD〉
Specifies the order of the derivative to extract from the Savitzky–Golay smoothing algo-
rithm. For regular Savitzky–Golay smoothing of the input data as such, use lD = 0. For
the Savitzky–Golay smoothing and extraction of derivatives, set lD to the order of the
desired derivative and make sure that you correctly interpret the scaling parameters as
described in Numerical Recipes in C, 2nd Edn (Cambridge University Press, New York,
1994).

−−help, −h
Displays a brief help message and terminates the SGFILTER program clean from any error
codes.

−−verbose, −v
Toggle verbose mode. (Default: Off.) This option should always be omitted whenever no
output file has been specified (that is to say, omit any −−verbose or −v option whenever
−−outputfile or −o has been omitted), as the verbose logging otherwise will contaminate
the filtered data stream written to the console (terminal).

§9 SGFILTER EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM 11

9. Example of Savitzky–Golay filtering with the SGFILTER program. It is always a good idea to
create a rather “nasty” test case for an algorithm, and in this case it also provides the reader of this code
with a (hopefully) clear example of usage of the SGFILTER program.
We start off with generating a test suite of noisy data, in this case modeling an underlying function g(x)

with superimposed Gaussian noise as

f(x) = cos(3x) sin2(x3) + 4
4∑

k=1

exp(−(x− xk)
2/w2

k)

︸ ︷︷ ︸

g(x)

+V u(x)

︸ ︷︷ ︸

noise

where u(x) is a normally distributed stochastic variable of mean zero and unit variance, V is the local
variance as specified arbitrarily, and the remaining parameters (xk, wk) are the positions and widths of
four Gaussian peaks superimposed onto the otherwise trigonometric expression for the underlying function.
For the current test suite we use (x1, w1) = (0.2, 0.007), (x2, w2) = (0.4, 0.01), (x3, w3) = (0.6, 0.02), and
(x4, w4) = (0.8, 0.04). These Gaussian peaks serve as to provide various degrees of rapidly varying data, to
check the performance in finding maxima. Meanwhile, the less rapidly varying domains which are dominated
by the trigonometric expression serves as a test for the capability of the filter to handle rather moderate
variations of low amplitude.
The underlying test function g(x) is shown† in Fig. 1.

0 0.5 1 1.5 2 2.5
−2

0

2

4

x

y

Figure 1. The underlying test function g(x) = cos(3x) sin2(x3) + 4
∑4

k=1 exp(−(x −
xk)

2/w2
k) without any added noise. Here the positions and widths of the Gaussian peaks

are (x1, w1) = (0.2, 0.007), (x2, w2) = (0.4, 0.01), (x3, w3) = (0.6, 0.02), and (x4, w4) =
(0.8, 0.04).

The generator of artificial test data to be tested by the Savitsky–Golay filtering algorithm is here included as
a simple C program, which automatically is generated from the master CWEB source when passed through
CTANGLE.

〈 example.c 9 〉 ≡
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

#define TWOPI (2.0 ∗ 3.141592653589793)
float gauss (float x,float w,float xa)

† See the *.eps blocks in the enclosed Makefile for details on how METAPOSTwas used in the generation
of the encapsulated PostScript images shown in Figs. 1–6.

12 EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM SGFILTER §9

{
return (exp(−pow (((x− xa)/w), 2)));

}

float func(float x)
{
float retval = gauss (x, 0.007, 0.2); /∗ x1 = 0.2, w1 = 0.007 ∗/

retval += gauss (x, 0.01, 0.4); /∗ x2 = 0.4, w2 = 0.01 ∗/
retval += gauss (x, 0.02, 0.6); /∗ x3 = 0.6, w3 = 0.02 ∗/
retval += gauss (x, 0.04, 0.8); /∗ x4 = 0.8, w4 = 0.04 ∗/
retval ∗= 4.0;
retval += cos (3.0 ∗ x) ∗ pow (sin (pow (x, 3)), 2);
return (retval);

}

int main (int argc , char ∗argv [])
{
int k, mm = 1024;
float var = 1.0, xmax = 2.5, x1 , x2 , u, v, f , z;

if (argc > 1) sscanf (argv [1], "%f",&var); /∗ Read first argument as variance ∗/
srand ((unsigned) time (Λ)); /∗ Initialize random number generator ∗/
for (k = 0; k < mm − 1; k += 2) {
x1 = xmax ∗ k/((double) mm − 1);
x2 = xmax ∗ (k + 1)/((double) mm − 1);
u = ((float) rand ())/RAND_MAX; /∗ Uniformly distributed over [0, 1] ∗/
v = ((float) rand ())/RAND_MAX; /∗ Uniformly distributed over [0, 1] ∗/
if (u > 0.0) { /∗ Apply the Box–Muller algorithm on u and v ∗/
f = sqrt (−2 ∗ log (u));
z = TWOPI ∗ v;
u = f ∗ cos (z); /∗ Normally distributed with E(u)=0 and Var(u)=1 ∗/
v = f ∗ sin (z); /∗ Normally distributed with E(u)=0 and Var(u)=1 ∗/
fprintf (stdout , "%1.8f %1.8f\n", x1 , func(x1) + var ∗ u); /∗ f(x1) ∗/
fprintf (stdout , "%1.8f %1.8f\n", x2 , func(x2) + var ∗ v); /∗ f(x2) ∗/

}
}
return (0);

}

§10 SGFILTER EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM 13

10. After having compiled the above code example.c, simply run ./example 〈noise variance〉 > 〈file
name〉 in order to generate the test function with a superimposed normally distributed (gaussian) noise of
desired variance. In particular, we will in this test suite consider variances of 0 (that is to say, the underlying
function without any noise), 0.5, 1.0, and 2.0. Such data files are simply generated by executing†

./example 0.0 > example-0.0.dat

./example 0.5 > example-0.5.dat

./example 1.0 > example-1.0.dat

./example 2.0 > example-2.0.dat

The resulting “noisified” suite of test data are in Figs. 2–4 shown for the respective noise variances of V = 0.5,
V = 1.0, and V = 2.0, respectively.

Underlying function g(x)
g(x) with added Gaussian noise of variance mvar(u(x)) = 2.0

0 0.5 1 1.5 2 2.5

−6

−4

−2

0

2

4

6

x

y

Figure 2. The test function g(x) with added Gaussian noise of variance V = 2.0, as
stored in file example−2.0.dat in the test suite.

† The resulting test data, which so far has not been subject to any filtering, may easily be viewed by running
the following script in Octave/Matlab:

clear all; close all;

hold on;

u=load(’example-2.0.dat’); plot(u(:,1),u(:,2),’-b’);

u=load(’example-1.0.dat’); plot(u(:,1),u(:,2),’-c’);

u=load(’example-0.5.dat’); plot(u(:,1),u(:,2),’-r’);

u=load(’example-0.0.dat’); plot(u(:,1),u(:,2),’-k’);

legend(’var(f(x))=2.0’,’var(f(x))=1.0’,’var(f(x))=0.5’,’var(f(x))=0.0’);

hold off;

title(’Artificial data generated for tests of Savitzky-Golay filtering’);

xlabel(’x’);

ylabel(’f(x)’);

14 EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM SGFILTER §11

11. Applying the Savitzky–Golay filter to the test data is now a straightforward task. Say that we wish to
test filtering with polynomial degreem = 4 and ld = 0 (which is the default value of ld , for regular smoothing
with a delivered “zero:th order derivative”, that is to say the smoothed non-differentiated function), for the
two cases nl = nr = 10 (in total 21 points in the regression kernel) and nl = nr = 60 (in total 121 points
in the regression kernel). Using the previously generated test suite of noisy data, the filtering is then easily
accomplished by executing:

./sgfilter -m 4 -nl 60 -nr 60 -i example-0.0.dat -o example-0.0-f-60.dat

./sgfilter -m 4 -nl 10 -nr 10 -i example-0.0.dat -o example-0.0-f-10.dat

./sgfilter -m 4 -nl 60 -nr 60 -i example-0.5.dat -o example-0.5-f-60.dat

./sgfilter -m 4 -nl 10 -nr 10 -i example-0.5.dat -o example-0.5-f-10.dat

./sgfilter -m 4 -nl 60 -nr 60 -i example-1.0.dat -o example-1.0-f-60.dat

./sgfilter -m 4 -nl 10 -nr 10 -i example-1.0.dat -o example-1.0-f-10.dat

./sgfilter -m 4 -nl 60 -nr 60 -i example-2.0.dat -o example-2.0-f-60.dat

./sgfilter -m 4 -nl 10 -nr 10 -i example-2.0.dat -o example-2.0-f-10.dat

The resulting filtered data sets are shown in Figs. 3–6 for noise variances of V = 2.0, V = 1.0, V = 0.5, and
V = 0, respectively. The final case corresponds to the interesting case of filtering the underlying function g(x)
without any added noise whatsoever, which corresponds to performing a local regression of the regression
polynomial to the analytical trigonometric and exponential functions being terms of g(x), a regression where
we by no means should expect a perfect match.

Underlying function g(x)
g(x) with added Gaussian noise of variance mvar(u(x)) = 2.0
Filtered with m = 4 and nl = nr = 10
Filtered with m = 4 and nl = nr = 60

0 0.5 1 1.5 2 2.5

−6

−4

−2

0

2

4

6

x

y

Figure 3. The profiles resulting from Savitzky–Golay-filtering of the test function g(x)
with added Gaussian noise of variance V = 2.0.

As can be seen in Fig. 3, the results from filtering the “worst-case” set (with noise variance V = 2.0) with
nl = nr = 10 (nl + nr + 1 = 21 samples in the regression kernel) and m = 4 (curve in blue) yield a rather
good tracking of the narrow Gaussian peaks, meanwhile performing rather poor in the low-amplitude and
rather slowly varying trigonometric hills in the right-hand side of the graph. As a reference, the underlying
function g(x) is mapped in dashed black. On the other hand, with nl = nr = 60 (nl +nr +1 = 121 samples
in the regression kernel) and keeping the same degree of the regression polynomial (curve in red), the narrow
peaks are barely followed, meanwhile having a rather poor performance in the slowly varying hills as well
(albeit of a very poor signal-to-noise ratio).

§11 SGFILTER EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM 15

However, with a lower variance of the superimposed noise, we at V = 1 have a nice tracking of the slowly
varying hills by the 121-sample regression kernel, as shown in Fig. 4, meanwhile having a good tracking of
the narrow Gaussian peaks by the 21-sample regression kernel. That the nl + = 21-sample window is noisier
than the 121-sample one should not really be surprising, as the higher number of samples in the regression
window tend to smoothen out the regression even further.

Underlying function g(x)
g(x) with added Gaussian noise of variance mvar(u(x)) = 1.0
Filtered with m = 4 and nl = nr = 10
Filtered with m = 4 and nl = nr = 60

0 0.5 1 1.5 2 2.5

−6

−4

−2

0

2

4

6

x

y

Figure 4. The profiles resulting from Savitzky–Golay-filtering of the test function g(x)
with added Gaussian noise of variance V = 1.0.

Underlying function g(x)
g(x) with added Gaussian noise of variance mvar(u(x)) = 0.5
Filtered with m = 4 and nl = nr = 10
Filtered with m = 4 and nl = nr = 60

0 0.5 1 1.5 2 2.5

−6

−4

−2

0

2

4

6

x

y

Figure 5. The profiles resulting from Savitzky–Golay-filtering of the test function g(x)
with added Gaussian noise of variance V = 0.5.

16 EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM SGFILTER §11

Underlying function g(x)
Filtered with m = 4 and nl = nr = 10
Filtered with m = 4 and nl = nr = 60

0 0.5 1 1.5 2 2.5

−6

−4

−2

0

2

4

6

x

y

Figure 6. The profiles resulting from Savitzky–Golay-filtering of the test function g(x)
with added Gaussian noise of variance V = 0, that is to say a direct regression against
the underlying function g(x). This figure illustrates the limitations of the attempts
of linear regression of a polynomial to an underlying function which clearly cannot be
approximated by a simple polynomial expressin in certain domains. One should always
keep this limitation in mind before accepting (or discarding) data filtered by the Savitzky–
Golay algorithm, despite the many cases in which it performs exceptionally well.

§11 SGFILTER EXAMPLE OF SAVITZKY–GOLAY FILTERING WITH THE SGFILTER PROGRAM 17

12. Header files. We put the interface part of our routines in the header file sgfilter.h, and we restrict
ourselves to a lowercase file name to maintain portability among operating systems with case-insensitive file
names. There are just a few global definitions present in the SGFILTER program:

VERSION The current program revision number.

COPYRIGHT The copyright banner.

DEFAULT_NL The default value to use for the nl variable unless stated otherwise at the
command line during startup of the program. This parameter specifies the
number of samples nL to use to the “left” of the basis sample in the regression
window (kernel). The total number of samples in the window will be nL+nR+1.

DEFAULT_NR The default value to use for the nr variable unless stated otherwise at the
command line during startup of the program. This parameter specifies the
number of samples nR to use to the “right” of the basis sample in the regression
window (kernel). The total number of samples in the window will be nL+nR+1.

DEFAULT_M The default value to use for the m variable unless stated otherwise at the com-
mand line during startup of the program. This parameter specifies the order m
of the polynomial p(x) = a0 + a1(x− xk) + a2(x− xk)

2 + . . .+ am(x− xk)
m to

use in the regression analysis leading to the Savitzky–Golay coefficients. Typical
values are between m = 2 and m = 6. Beware of too high values, which easily
makes the regression too sensitive, with an oscillatory result.

DEFAULT_LD The default value to use for the ld variable unless stated otherwise at the com-
mand line during startup of the program. This parameter specifies the order
of the derivative to extract from the Savitzky–Golay smoothing algorithm. For
regular Savitzky–Golay smoothing of the input data as such, use lD = 0. For
the Savitzky–Golay smoothing and extraction of derivatives, set lD to the order
of the desired derivative and make sure that you correctly interpret the scal-
ing parameters as described in Numerical Recipes in C, 2nd Edn (Cambridge
University Press, New York, 1994).

NCHMAX The maximum number of characters allowed in strings for storing file names,
including path.

log (. . .) The log () macro forms the user interface to run-time error messaging and con-
sole logging activities, by invoking the log printf () routine. The log () macro is
preferrably used rather than direct calls to log printf (), as it automatizes the
extraction of the calling routine, via the func macro. Notice that the clean
construction of the macro using variable-length arguments (via __VA_ARGS__)
only is supported at ISO 9899:1999 (ISO C99) standard level or above (see, for
example, http://en.wikipedia.org/wiki/C99), which is the default compli-
ance level used in the enclosed Makefile. (In fact, this is here the very reason
for using ISO 9899:1999 rather than ISO 9899:1990).

〈 sgfilter.h 12 〉 ≡
#define VERSION "1.6"

#define COPYRIGHT "Copyright (C) 2006−2011, Fredrik Jonsson"

#define DEFAULT_NL (15)
#define DEFAULT_NR (15)
#define DEFAULT_M (4)
#define DEFAULT_LD (0)
#define EPSILON ((double)(1.0 · 10−20))
#define NCHMAX (256)
#define CONVOLVE_WITH_NR_CONVLV (0)
#define log (. . .)log printf (func , __VA_ARGS__)
#if defined (_CYGWIN_SIGNAL_H) ∨ defined (__APPLE__) ∨ defined (unix) ∨ defined (linux)

18 HEADER FILES SGFILTER §12

#define UNIX_LIKE_OS (1)
#endif

void log printf (const char ∗function name , const char ∗format , . . .);
int ∗ivector (long nl , long nh);
double ∗dvector (long nl , long nh);
double ∗∗dmatrix (long nrl , long nrh , long ncl , long nch);
void free ivector (int ∗v, long nl , long nh);
void free dvector (double ∗v, long nl , long nh);
void free dmatrix (double ∗∗m, long nrl , long nrh , long ncl , long nch);
void lubksb (double ∗∗a, int n, int ∗indx ,double b[]);
void ludcmp(double ∗∗a, int n, int ∗indx ,double ∗d);
void four1 (double data [],unsigned long nn , int isign);
void twofft (double data1 [],double data2 [],double fft1 [],double fft2 [],unsigned long n);
void realft (double data [],unsigned long n, int isign);
char convlv (double data [],unsigned long n,double respns [],unsigned long m, int isign ,double

ans []);
char sgcoeff (double c[], int np , int nl , int nr , int ld , int m);
char sgfilter (double yr [],double yf [], int mm , int nl , int nr , int ld , int m);
char ∗strip away path (char filename []);
long int num coordinate pairs (FILE ∗file);

§13 SGFILTER THE MAIN PROGRAM 19

13. The main program. Here follows the general outline of the main routine of the SGFILTER program.
This is where it all starts.

〈Library inclusions 14 〉
〈Global variables 15 〉
〈Definitions of routines 22 〉

int main (int argc , char ∗argv [])
{
〈Definition of variables 16 〉
〈Parse command line for options and parameters 17 〉
〈Allocate memory and read M samples of unfiltered data from file 18 〉
〈Filter raw data through the Savitzky–Golay smoothing filter 19 〉
〈Write filtered data to file or terminal output 20 〉
〈Deallocate memory 21 〉
return (EXIT_SUCCESS);

}

14. Library dependencies. The standard ANSI C libraries included in this program are:

math.h For access to common mathematical functions.

stdio.h For file access and any block involving fprintf .

stdlib.h For access to the exit function.

stdarg.h For access to vsprintf , vfprintf etc.

string.h For string manipulation, strcpy , strcmp etc.

ctype.h For access to the isalnum function.

time.h For access to ctime , clock and time stamps.

sys/time.h For access to millisecond-resolved timer.

〈Library inclusions 14 〉 ≡
#include <math.h>

#include <stdlib.h>

#include <stdarg.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <time.h>

#include <sys/time.h>

#include "sgfilter.h"

This code is used in section 13.

15. Declaration of global variables. The only global variables allowed in my programs are optarg , which
is a pointer to the the string of characters that specified the call from the command line, and progname ,
which simply is a pointer to the string containing the name of the program, as it was invoked from the
command line. Typically, the progname string is the result remaining after having passed argv [0] through
the strip away path routine, just before parsing the command line for parameters.

〈Global variables 15 〉 ≡
extern char ∗optarg ;
char ∗progname ;

This code is used in section 13.

20 THE MAIN PROGRAM SGFILTER §16

16. Declaration of local variables of the main program. In CWEB one has the option of adding variables
along the program, for example by locally adding temporary variables related to a given sub-block of code.
However, the philosophy in the SGFILTER program is to keep all variables of the main section collected
together, so as to simplify tasks as, for example, tracking down a given variable type definition. The local
variables of the program are as follows:

∗x, ∗yr , ∗yf Pointers to the double precision vectors keeping the abscissa, unfiltered (raw)
ordinata, and the and the resulting filtered ordinata, respectively.

mm Keeps track of the number of samples to analyze, mm ≡ M .

∗file Dummy file pointer used for scanning through input data and for writing data
to an output file.

input filename String for keeping the file name of the input data.

output filename Ditto for the output data.

verbose Determines whether the program should run in verbose mode (logging various
activities along the execution) or not. Default is off.

〈Definition of variables 16 〉 ≡
int no arg ;
int nl = DEFAULT_NL;
int nr = DEFAULT_NR;
int ld = DEFAULT_LD;
int m = DEFAULT_M;
long int k, mm = 0;
double ∗x, ∗yr , ∗yf ;
char input filename [NCHMAX] = "", output filename [NCHMAX] = "";
char verbose = 0;
FILE ∗file ;

This code is used in section 13.

§17 SGFILTER THE MAIN PROGRAM 21

17. Parsing command line options. All input parameters are passed to the program through command
line options to the SGFILTER program. The syntax of the accepted command line options is listed whenever
the program is invoked without any options, or whenever any of the −−help or −h options are specified at
startup.

〈Parse command line for options and parameters 17 〉 ≡
progname = strip away path (argv [0]);
no arg = argc ;
while (−−argc) {
if (¬strcmp(argv [no arg − argc], "−o") ∨ ¬strcmp(argv [no arg − argc], "−−outputfile")) {

−−argc ;
strcpy (output filename , argv [no arg − argc]);

}
else if (¬strcmp(argv [no arg − argc], "−i") ∨ ¬strcmp(argv [no arg − argc], "−−inputfile")) {

−−argc ;
strcpy (input filename , argv [no arg − argc]);

}
else if (¬strcmp(argv [no arg − argc], "−h") ∨ ¬strcmp(argv [no arg − argc], "−−help")) {
showsomehelp ();
exit (0);

}
else if (¬strcmp(argv [no arg − argc], "−v") ∨ ¬strcmp(argv [no arg − argc], "−−verbose")) {
verbose = (verbose ? 0 : 1);

}
else if (¬strcmp(argv [no arg − argc], "−nl")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&nl)) {
log ("Error in ’−nl’ option.");
exit (1);

}
}
else if (¬strcmp(argv [no arg − argc], "−nr")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&nr)) {
log ("Error in ’−nr’ option.");
exit (1);

}
}
else if (¬strcmp(argv [no arg − argc], "−ld")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&ld)) {
log ("Error in ’−ld’ option.");
exit (1);

}
}
else if (¬strcmp(argv [no arg − argc], "−m")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&m)) {
log ("Error in ’−m’ option.");
exit (1);

}
}
else {

22 THE MAIN PROGRAM SGFILTER §17

log ("Unrecognized option ’%s’.", argv [no arg − argc]);
showsomehelp ();
exit (1);

}
}
if (verbose) fprintf (stdout , "This is %s v.%s. %s\n", progname , VERSION, COPYRIGHT);

This code is used in section 13.

18. This is the where the raw (unfiltered) data is loaded into the computer memory. This block assumes
that the number of data points, M , has not previously been determined, neither by analysis of the input file
nor explicitly stated via command line options, and hence the number of samples is automatically extracted
using the num coordinate pairs routine.

〈Allocate memory and read M samples of unfiltered data from file 18 〉 ≡
if (¬strcmp(input filename , "")) {
log ("No input file specified! (Please use the ’−−inputfile’ option.)");
log ("Execute ’%s −−help’ for help.", progname);
exit (1);

}
if ((file = fopen (input filename , "r")) ≡ Λ) {
log ("Could not open %s for loading raw data!", input filename);
exit (1);

}
mm = num coordinate pairs (file);
if (mm < nl + nr + 1) {
log ("Error: The number M=%ld of data points must be at least nl+nr+1=%d",mm , nl +nr +1);
log ("Please check your −nl or −nr options.");
exit (1);

}
if (verbose) {
log ("Loading %ld unfiltered samples from %s...",mm , input filename);
log (" ... allocating memory for storage ...");

}
x = dvector (1,mm);
yr = dvector (1,mm);

#if CONVOLVE_WITH_NR_CONVLV

yf = dvector (1, 2 ∗mm);
#else

yf = dvector (1,mm);
#endif

if (verbose) log (" ... scanning %s for input data ...", input filename);
for (k = 1; k ≤ mm ; k++) {
fscanf (file , "%lf",&x[k]); /∗ Scan x-coordinate ∗/
fscanf (file , "%lf",&yr [k]); /∗ Scan unfiltered y-coordinate ∗/

}
fclose (file);
if (verbose) log (" ... done. Input now residing in RAM.");

This code is used in section 13.

§19 SGFILTER THE MAIN PROGRAM 23

19. Filter data. This is simple. One single call to the sgfilter routine and we are done.

〈Filter raw data through the Savitzky–Golay smoothing filter 19 〉 ≡
if (¬sgfilter (yr , yf ,mm , nl , nr , ld ,m)) {
if (verbose) log ("Successfully performed Savitzky−Golay filtering.");

}
else {
if (verbose) log ("Error: Could not perform Savitzky−Golay filtering.");

}

This code is used in section 13.

20. Write the filtered data to file or stdout , depending on whether or not the command line options
−o or −outputfile were present when starting the SGFILTER program. We here use a redirection of the
stdout stream using freopen (output filename , "w", stdout)) ≡ Λ) and (in the case of unix-like systems) a
re-redirection back to terminal output again with freopen ("/dev/tty", "a", stdout).

〈Write filtered data to file or terminal output 20 〉 ≡
if (¬strcmp(output filename , "")) { /∗ No filename specified ∗/
if (verbose) log ("Writing %ld filtered samples to console...",mm);

}
else { /∗ If file name specified ⇒ redirect stdout to file ∗/
if (verbose) log ("Writing %ld filtered samples to %s...",mm , output filename);
if ((file = freopen (output filename , "w", stdout)) ≡ Λ) {
log ("Error: Unable to redirect stdout stream to file %s.", output filename);
exit (1);

}
}
for (k = 1; k ≤ mm ; k++) fprintf (stdout , "%1.8f %1.8f\n", x[k], yf [k]);

#ifdef UNIX_LIKE_OS

freopen ("/dev/tty", "a", stdout); /∗ Redirect stdout back to console output ∗/
#endif

if (verbose) log (" ... done.");

This code is used in section 13.

21. Deallocate memory.

〈Deallocate memory 21 〉 ≡
free dvector (x, 1,mm);
free dvector (yr , 1,mm);

#if CONVOLVE_WITH_NR_CONVLV

free dvector (yf , 1, 2 ∗mm);
#else

free dvector (yf , 1,mm);
#endif

This code is used in section 13.

24 ROUTINES USED BY THE PROGRAM SGFILTER §22

22. Routines used by the program.

〈Definitions of routines 22 〉 ≡
〈Routine for error messaging 23 〉
〈Routine for allocation of integer precision vectors 24 〉
〈Routine for allocation of double floating-point precision vectors 25 〉
〈Routine for allocation of double floating-point precision matrices 26 〉
〈Routine for deallocation of integer precision vectors 27 〉
〈Routine for deallocation of double floating-point precision vectors 28 〉
〈Routine for deallocation of double floating-point precision matrices 29 〉
〈Routine for solving systems of linear equations by LU decomposition 30 〉
〈Routine for performing LU decomposition of a matrix 31 〉
〈Routine for discrete Fourier transformation of real-valued data 32 〉
〈Routine for simultaneous fast Fourier transformation of two data sets 33 〉
〈Routine for Fourier transformation of real-valued data 34 〉
〈Routine for numerical convolution 35 〉
〈Routine for computation of coefficients for Savitzky–Golay filtering 36 〉
〈Routine for Savitzky–Golay filtering 37 〉
〈Routine for removing preceding path of filenames 38 〉
〈Routine for displaying a brief help message on usage 40 〉
〈Routine for obtaining the number of coordinate pairs in a file 42 〉

This code is used in section 13.

§23 SGFILTER ROUTINES USED BY THE PROGRAM 25

23. The void log printf (const char ∗function name , const char ∗format , . . .) routine writes formatted
entries to standard output, displaying time and calling routine in a coherent manner. Notice that although
the log printf () routine is the one which performs the actual messaging, the log () macro (defined in the
header file) is the preferred way of accessing this routine, as it provides a more compact notation and
automatically takes care of supplying the reference to the name of the calling function.
Also notice that the const char type of the last two input pointer arguments here is absolutely essential

in order to pass strict pedantic compilation with GCC.
The routine accepts two input parameters. First, function name which should be the name of the calling

function. This is to ensure that any displayed error messages are properly matched to the issuing routines.
Notice, however, that the log () macro (which is the preferred way of displaying error messages) automatically
takes care of supplying the proper function name. Second, format , which simply is the format and message
string to be displayed, formatted in the C-standard printf () or fprintf () syntax.

〈Routine for error messaging 23 〉 ≡
void log printf (const char ∗function name , const char ∗format , . . .)
{
va list args ;
time t time0 ;
struct tm lt ;
struct timeval tv ;
char logentry [1024];

gettimeofday (&tv ,Λ);
time (&time0);
lt = ∗localtime (&time0);
sprintf (logentry , "%02u%02u%02u %02u:%02u:%02u.%03d ", lt .tm year − 100, lt .tm mon + 1,

lt .tm mday , lt .tm hour , lt .tm min , lt .tm sec , tv .tv usec/1000);
sprintf (logentry + strlen (logentry), "(%s) ", function name);
va start (args , format); /∗ Initialize args by the va start () macro ∗/
vsprintf (logentry + strlen (logentry), format , args);
va end (args); /∗ Terminate the use of args by the va end () macro ∗/
sprintf (logentry + strlen (logentry), "\n"); /∗ Always append newline ∗/
fprintf (stdout , "%s", logentry);
return;

}

This code is used in section 22.

24. The int ∗ivector (long nl , long nh) routine allocates a real-valued vector of integer precision, with
vector index ranging from nl to nh .

〈Routine for allocation of integer precision vectors 24 〉 ≡
int ∗ivector (long nl , long nh)
{
int ∗v;

v = (int ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (int)));
if (¬v) {
log ("Error: Allocation failure.");
exit (1);

}
return v − nl + 1;

}

This code is used in section 22.

26 ROUTINES USED BY THE PROGRAM SGFILTER §25

25. The double ∗dvector (long nl , long nh) routine allocates a real-valued vector of double precision,
with vector index ranging from nl to nh .

〈Routine for allocation of double floating-point precision vectors 25 〉 ≡
double ∗dvector (long nl , long nh)
{
double ∗v;
long k;

v = (double ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (double)));
if (¬v) {
log ("Error: Allocation failure.");
exit (1);

}
for (k = nl ; k ≤ nh ; k++) v[k] = 0.0;
return v − nl + 1;

}

This code is used in section 22.

26. The double ∗∗dmatrix (long nrl , long nrh , long ncl , long nch) routine allocates an array of double
floating-point precision, with row index ranging from nrl to nrh and column index ranging from ncl to nch .

〈Routine for allocation of double floating-point precision matrices 26 〉 ≡
double ∗∗dmatrix (long nrl , long nrh , long ncl , long nch)
{
long i, nrow = nrh − nrl + 1, ncol = nch − ncl + 1;
double ∗∗m;

m = (double ∗∗) malloc((size t)((nrow + 1) ∗ sizeof (double ∗)));
if (¬m) {
log ("Allocation failure 1 occurred.");
exit (1);

}
m += 1;
m −= nrl ;
m[nrl] = (double ∗) malloc((size t)((nrow ∗ ncol + 1) ∗ sizeof (double)));
if (¬m[nrl]) {
log ("Allocation failure 2 occurred.");
exit (1);

}
m[nrl] += 1;
m[nrl] −= ncl ;
for (i = nrl + 1; i ≤ nrh ; i++) m[i] = m[i− 1] + ncol ;
return m;

}

This code is used in section 22.

27. The void free ivector (int ∗v, long nl , long nh) routine release the memory occupied by the real-
valued vector v [nl . . . nh].

〈Routine for deallocation of integer precision vectors 27 〉 ≡
void free ivector (int ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));

}

This code is used in section 22.

§28 SGFILTER ROUTINES USED BY THE PROGRAM 27

28. The free dvector routine release the memory occupied by the real-valued vector v [nl . . . nh].

〈Routine for deallocation of double floating-point precision vectors 28 〉 ≡
void free dvector (double ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));

}

This code is used in section 22.

29. The void free dmatrix (double ∗∗m, long nrl , long nrh , long ncl , long nch) routine releases the
memory occupied by the double floating-point precision matrix v [nl . . . nh], as allocated by dmatrix ().

〈Routine for deallocation of double floating-point precision matrices 29 〉 ≡
void free dmatrix (double ∗∗m, long nrl , long nrh , long ncl , long nch)
{
free ((char ∗)(m[nrl] + ncl − 1));
free ((char ∗)(m+ nrl − 1));

}

This code is used in section 22.

30. The lubksb (double ∗∗a, int n, int ∗indx ,double b[]) routine solves the set of n linear equations
A · x = b where A is a real-valued [n × n]-matrix and x and b are real-valued [n × 1]-vectors. Here
a[1...n][1...n] is input, however not as the matrix A but rather as its corresponding LU decomposition as
determined by the ludcmp routine. Here indx [1...n] is input as the permutation vector returned by ludcmp ,
b[1...n] is input as the right-hand side vector b, and returns with the solution vector x. The parameters
a, n, and indx are not modified by this routine and can be left in place for successive calls with different
right-hand sides b. This routine takes into account the possibility that b will begin with many zero elements,
so it is efficient for use in matrix inversion. The lubksb routine is adopted from Numerical Recipes in C, 2nd
Edn (Cambridge University Press, New York, 1994).

〈Routine for solving systems of linear equations by LU decomposition 30 〉 ≡
void lubksb (double ∗∗a, int n, int ∗indx ,double b[])
{
int i, ii = 0, ip , j;
double sum ;

for (i = 1; i ≤ n; i++) {
ip = indx [i];
sum = b[ip];
b[ip] = b[i];
if (ii)
for (j = ii ; j ≤ i− 1; j++) sum −= a[i][j] ∗ b[j];

else if (sum) ii = i;
b[i] = sum ;

}
for (i = n; i ≥ 1; i−−) {
sum = b[i];
for (j = i+ 1; j ≤ n; j++) sum −= a[i][j] ∗ b[j];
b[i] = sum/a[i][i];

}
}

This code is used in section 22.

28 ROUTINES USED BY THE PROGRAM SGFILTER §31

31. Given a square and real-valued matrix a[1...n][1...n], the ludcmp(float ∗∗a, int n, int ∗indx ,float ∗d)
routine replaces it by the corresponding LU decomposition of a rowwise permutation of itself. Entering the
routine, the square matrix a and its number of columns (or rows) n are inputs. On return, a is arranged as
in Eq. (2.3.14) of Numerical Recipes in C, 2nd edition, while indx [1...n] is an output vector that records the
row permutation effected by the partial pivoting, and d is output as ±1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is commonly used in combination with lubksb

to solve linear equations or invert a matrix. The ludcmp routine is adopted from Numerical Recipes in C,
2nd Edn (Cambridge University Press, New York, 1994).

〈Routine for performing LU decomposition of a matrix 31 〉 ≡
void ludcmp(double ∗∗a, int n, int ∗indx ,double ∗d)
{
int i, imax = 0, j, k;
double big , dum , sum , temp ;
double ∗vv ;

vv = dvector (1, n);
∗d = 1.0;
for (i = 1; i ≤ n; i++) {
big = 0.0;
for (j = 1; j ≤ n; j++)
if ((temp = fabs (a[i][j])) > big) big = temp ;

if (big ≡ 0.0) {
log ("Error: Singular matrix found in routine ludcmp()");
exit (1);

}
vv [i] = 1.0/big ;

}
for (j = 1; j ≤ n; j++) {
for (i = 1; i < j; i++) {
sum = a[i][j];
for (k = 1; k < i; k++) sum −= a[i][k] ∗ a[k][j];
a[i][j] = sum ;

}
big = 0.0;
for (i = j; i ≤ n; i++) {
sum = a[i][j];
for (k = 1; k < j; k++) sum −= a[i][k] ∗ a[k][j];
a[i][j] = sum ;
if ((dum = vv [i] ∗ fabs (sum)) ≥ big) {
big = dum ;
imax = i;

}
}
if (j 6= imax) {
for (k = 1; k ≤ n; k++) {
dum = a[imax][k];
a[imax][k] = a[j][k];
a[j][k] = dum ;

}
∗d = −(∗d);
vv [imax] = vv [j];

}
indx [j] = imax ;

§31 SGFILTER ROUTINES USED BY THE PROGRAM 29

if (a[j][j] ≡ 0.0) a[j][j] = EPSILON;
if (j 6= n) {
dum = 1.0/(a[j][j]);
for (i = j + 1; i ≤ n; i++) a[i][j] ∗= dum ;

}
}
free dvector (vv , 1, n);

}

This code is used in section 22.

30 ROUTINES USED BY THE PROGRAM SGFILTER §32

32. The four1 (double data [],unsigned long nn , int isign) routine replaces data [1...2∗nn] by its discrete
Fourier transform, if isign is input as +1; or replaces data [1..2 ∗ nn] by nn times its inverse discrete Fourier
transform, if isign is input as −1. Here data is a complex-valued array of length nn or, equivalently, a real
array of length 2 ∗ nn , wher nn must be an integer power of 2 (this is not checked for). The four1 routine
is adopted from Numerical Recipes in C, 2nd Edn (Cambridge University Press, New York, 1994).

〈Routine for discrete Fourier transformation of real-valued data 32 〉 ≡
#include <math.h>

#define SWAP(a, b)tempr = (a);
(a) = (b); (b) = tempr

void four1 (double data [],unsigned long nn , int isign)
{
unsigned long n, mmax , m, j, istep , i;
double wtemp , wr , wpr , wpi , wi , theta ;
double tempr , tempi ;

n = nn ≪ 1;
j = 1;
for (i = 1; i < n; i += 2) {
if (j > i) {
SWAP(data [j], data [i]);
SWAP(data [j + 1], data [i+ 1]);

}
m = n ≫ 1;
while (m ≥ 2 ∧ j > m) {
j −= m;
m ≫= 1;

}
j += m;

}
mmax = 2;
while (n > mmax) {
istep = mmax ≪ 1;
theta = isign ∗ (6.28318530717959/mmax);
wtemp = sin (0.5 ∗ theta);
wpr = −2.0 ∗ wtemp ∗ wtemp ;
wpi = sin (theta);
wr = 1.0;
wi = 0.0;
for (m = 1; m < mmax ; m += 2) {
for (i = m; i ≤ n; i += istep) {
j = i+mmax ;
tempr = wr ∗ data [j]− wi ∗ data [j + 1];
tempi = wr ∗ data [j + 1] + wi ∗ data [j];
data [j] = data [i]− tempr ;
data [j + 1] = data [i+ 1]− tempi ;
data [i] += tempr ;
data [i+ 1] += tempi ;

}
wr = (wtemp = wr) ∗ wpr − wi ∗ wpi + wr ;
wi = wi ∗ wpr + wtemp ∗ wpi + wi ;

}
mmax = istep ;

}

§32 SGFILTER ROUTINES USED BY THE PROGRAM 31

}
#undef SWAP

This code is used in section 22.

33. The twofft (double data1 [],double data2 [],double fft1 [],double fft2 [],unsigned long n) routine
takes two real-valued arrays data1 [1...n] and data2 [1...n] as input, makes a call to the four1 routine and
returns two complex-valued output arrays fft1 [1...2 ∗ n] and fft2 [1...2 ∗ n], each of complex length n (that is
to say, a real length of 2 ∗ n elements), which contain the discrete Fourier transforms of the respective data
arrays. Here n must be an integer power of 2. The twofft routine is adopted from Numerical Recipes in C,
2nd Edn (Cambridge University Press, New York, 1994).

〈Routine for simultaneous fast Fourier transformation of two data sets 33 〉 ≡
void twofft (double data1 [],double data2 [],double fft1 [],double fft2 [],unsigned long n)
{
void four1 (double data [],unsigned long nn , int isign);
unsigned long nn3 , nn2 , jj , j;
double rep , rem , aip , aim ;

nn3 = 1 + (nn2 = 2 + n+ n);
for (j = 1, jj = 2; j ≤ n; j++, jj += 2) {
fft1 [jj − 1] = data1 [j];
fft1 [jj] = data2 [j];

}
four1 (fft1 , n, 1);
fft2 [1] = fft1 [2];
fft1 [2] = fft2 [2] = 0.0;
for (j = 3; j ≤ n+ 1; j += 2) {
rep = 0.5 ∗ (fft1 [j] + fft1 [nn2 − j]);
rem = 0.5 ∗ (fft1 [j]− fft1 [nn2 − j]);
aip = 0.5 ∗ (fft1 [j + 1] + fft1 [nn3 − j]);
aim = 0.5 ∗ (fft1 [j + 1]− fft1 [nn3 − j]);
fft1 [j] = rep ;
fft1 [j + 1] = aim ;
fft1 [nn2 − j] = rep ;
fft1 [nn3 − j] = −aim ;
fft2 [j] = aip ;
fft2 [j + 1] = −rem ;
fft2 [nn2 − j] = aip ;
fft2 [nn3 − j] = rem ;

}
}

This code is used in section 22.

32 ROUTINES USED BY THE PROGRAM SGFILTER §34

34. The realft (double data [],unsigned long n, int isign) routine calculates the Fourier transform of a
set of n real-valued data points. On return the routine replaces this data (which is stored in array data [1...n])
by the positive frequency half of its complex Fourier transform. The real-valued first and last components of
the complex transform are returned in elements data [1] and data [2], respectively. Here n must be a power
of 2. This routine also calculates the inverse transform of a complex data array if it is the transform of real
data. (In this case, the result must be multiplied by 2/n.) The realft routine is adopted from Numerical

Recipes in C, 2nd Edn (Cambridge University Press, New York, 1994).

〈Routine for Fourier transformation of real-valued data 34 〉 ≡
void realft (double data [],unsigned long n, int isign)
{
void four1 (double data [],unsigned long nn , int isign);
unsigned long i, i1 , i2 , i3 , i4 , np3 ;
double c1 = 0.5, c2 , h1r , h1i , h2r , h2i ;
double wr , wi , wpr , wpi , wtemp , theta ;

theta = 3.141592653589793/(double)(n ≫ 1);
if (isign ≡ 1) {
c2 = −0.5;
four1 (data , n ≫ 1, 1);

}
else {
c2 = 0.5;
theta = −theta ;

}
wtemp = sin (0.5 ∗ theta);
wpr = −2.0 ∗ wtemp ∗ wtemp ;
wpi = sin (theta);
wr = 1.0 + wpr ;
wi = wpi ;
np3 = n+ 3;
for (i = 2; i ≤ (n ≫ 2); i++) {
i4 = 1 + (i3 = np3 − (i2 = 1 + (i1 = i+ i− 1)));
h1r = c1 ∗ (data [i1] + data [i3]);
h1i = c1 ∗ (data [i2]− data [i4]);
h2r = −c2 ∗ (data [i2] + data [i4]);
h2i = c2 ∗ (data [i1]− data [i3]);
data [i1] = h1r + wr ∗ h2r − wi ∗ h2i ;
data [i2] = h1i + wr ∗ h2i + wi ∗ h2r ;
data [i3] = h1r − wr ∗ h2r + wi ∗ h2i ;
data [i4] = −h1i + wr ∗ h2i + wi ∗ h2r ;
wr = (wtemp = wr) ∗ wpr − wi ∗ wpi + wr ;
wi = wi ∗ wpr + wtemp ∗ wpi + wi ;

}
if (isign ≡ 1) {
data [1] = (h1r = data [1]) + data [2];
data [2] = h1r − data [2];

}
else {
data [1] = c1 ∗ ((h1r = data [1]) + data [2]);
data [2] = c1 ∗ (h1r − data [2]);
four1 (data , n ≫ 1,−1);

}
}

§34 SGFILTER ROUTINES USED BY THE PROGRAM 33

This code is used in section 22.

35. The convlv (double data [],unsigned long n,double respns [],unsigned long m, int isign ,double
ans []) routine convolves or deconvolves a real data set data [1...n] (including any user-supplied zero padding)
with a response function respns [1...n]. The response function must be stored in wrap-around order in the
first m elements of respns, where m is an odd integer less than or equal to n. Wrap-around order means
that the first half of the array respns contains the impulse response function at positive times, while the
second half of the array contains the impulse response function at negative times, counting down from the
highest element respns [m]. On input, isign is +1 for convolution, and −1 for deconvolution. The answer
is returned in the first n components of ans . However, ans must be supplied in the calling program with
dimensions [1...2 ∗ n], for consistency with the twofft routine. Here n must be an integer power of two. The
convlv routine is adopted from Numerical Recipes in C, 2nd Edn (Cambridge University Press, New York,
1994).

〈Routine for numerical convolution 35 〉 ≡
char convlv (double data [],unsigned long n,double respns [],unsigned long m, int isign ,double

ans [])
{
void realft (double data [],unsigned long n, int isign);
void twofft (double data1 [],double data2 [],double fft1 [],double fft2 [],unsigned long n);
unsigned long i, no2 ;
double dum , mag2 , ∗fft ;

fft = dvector (1, n ≪ 1);
for (i = 1; i ≤ (m− 1)/2; i++) respns [n+ 1− i] = respns [m+ 1− i];
for (i = (m+ 3)/2; i ≤ n− (m− 1)/2; i++) respns [i] = 0.0;
twofft (data , respns ,fft , ans , n);
no2 = n ≫ 1;
for (i = 2; i ≤ n+ 2; i += 2) {
if (isign ≡ 1) {
ans [i− 1] = (fft [i− 1] ∗ (dum = ans [i− 1])− fft [i] ∗ ans [i])/no2 ;
ans [i] = (fft [i] ∗ dum + fft [i− 1] ∗ ans [i])/no2 ;

}
else if (isign ≡ −1) {
if ((mag2 = ans [i− 1] ∗ ans [i− 1] + ans [i] ∗ ans [i]) ≡ 0.0) {
log ("Attempt of deconvolving at zero response in convlv().");
return (1);

}
ans [i− 1] = (fft [i− 1] ∗ (dum = ans [i− 1]) + fft [i] ∗ ans [i])/mag2 /no2 ;
ans [i] = (fft [i] ∗ dum − fft [i− 1] ∗ ans [i])/mag2 /no2 ;

}
else {
log ("No meaning for isign in convlv().");
return (1);

}
}
ans [2] = ans [n+ 1];
realft (ans , n,−1);
free dvector (fft , 1, n ≪ 1);
return (0);

}

This code is used in section 22.

34 ROUTINES USED BY THE PROGRAM SGFILTER §36

36. The void sgcoeff (double c[], int np , int nl , int nr , int ld , int m) routine computes the coefficients
c[1...np] for Savitzky–Golay filtering. The coefficient vector c[1...np] is returned in wrap-around order

consistent with the argument respns in the Numerical Recipes in C routine convlv . “Wrap-around order”
means that the first half of the array respns contains the impulse response function at positive times, while
the second half of the array contains the impulse response function at negative times, counting down from
the highest element respns [m]. The Savitzky–Golay filter coefficients are computed for nl leftward (past)
data points and nr rightward (future) data points, making the total number of data points used in the
window as np = nl + nr + 1. ld is the order of the derivative desired (for example, ld = 0 for smoothed
function). Here m is the order of the smoothing polynomial, also equal to the highest conserved moment;
usual values are m = 2 or m = 4. The sgcoeff routine is adopted from Numerical Recipes in C, 2nd Edn
(Cambridge University Press, New York, 1994).

〈Routine for computation of coefficients for Savitzky–Golay filtering 36 〉 ≡
char sgcoeff (double c[], int np , int nl , int nr , int ld , int m)
{
void lubksb (double ∗∗a, int n, int ∗indx ,double b[]);
void ludcmp(double ∗∗a, int n, int ∗indx ,double ∗d);
int imj , ipj , j, k, kk , mm , ∗indx ;
double d, fac , sum , ∗∗a, ∗b;

if (np < nl + nr + 1 ∨ nl < 0 ∨ nr < 0 ∨ ld > m ∨ nl + nr < m) {
log ("Inconsistent arguments detected in routine sgcoeff.");
return (1);

}
indx = ivector (1,m+ 1);
a = dmatrix (1,m+ 1, 1,m+ 1);
b = dvector (1,m+ 1);
for (ipj = 0; ipj ≤ (m ≪ 1); ipj ++) {
sum = (ipj ? 0.0 : 1.0);
for (k = 1; k ≤ nr ; k++) sum += pow ((double) k, (double) ipj);
for (k = 1; k ≤ nl ; k++) sum += pow ((double) −k, (double) ipj);
mm = (ipj < 2 ∗m− ipj ? ipj : 2 ∗m− ipj);
for (imj = −mm ; imj ≤ mm ; imj += 2) a[1 + (ipj + imj)/2][1 + (ipj − imj)/2] = sum ;

}
ludcmp(a,m+ 1, indx ,&d);
for (j = 1; j ≤ m+ 1; j++) b[j] = 0.0;
b[ld + 1] = 1.0;
lubksb (a,m+ 1, indx , b);
for (kk = 1; kk ≤ np ; kk ++) c[kk] = 0.0;
for (k = −nl ; k ≤ nr ; k++) {
sum = b[1];
fac = 1.0;
for (mm = 1; mm ≤ m; mm++) sum += b[mm + 1] ∗ (fac ∗= k);
kk = ((np − k) % np) + 1;
c[kk] = sum ;

}
free dvector (b, 1,m+ 1);
free dmatrix (a, 1,m+ 1, 1,m+ 1);
free ivector (indx , 1,m+ 1);
return (0);

}

This code is used in section 22.

§37 SGFILTER ROUTINES USED BY THE PROGRAM 35

37. The sgfilter (double yr [],double yf [], int mm , int nl , int nr , int ld , int m) routine provides the
interface for the actual Savitzky–Golay filtering of data. As input, this routine takes the following parameters:

yr [1...mm] A vector containing the raw, unfiltered data

mm The number of data points in the input vector

nl The number of samples nL to use to the “left” of the basis sample in the regression
window (kernel). The total number of samples in the window will be nL+nR+1.

nr The number of samples nR to use to the “right” of the basis sample in the
regression window (kernel). The total number of samples in the window will be
nL+ nR+ 1.

m The order m of the polynomial p(x) = a0+a1(x−xk)+a2(x−xk)
2+ . . .+am(x−

xk)
m to use in the regression analysis leading to the Savitzky–Golay coefficients.

Typical values are between m = 2 and m = 6. Beware of too high values, which
easily makes the regression too sensitive, with an oscillatory result.

ld The order of the derivative to extract from the Savitzky–Golay smoothing al-
gorithm. For regular Savitzky–Golay smoothing of the input data as such, use
lD = 0. For the Savitzky–Golay smoothing and extraction of derivatives, set lD to
the order of the desired derivative and make sure that you correctly interpret the
scaling parameters as described in Numerical Recipes in C, 2nd Edn (Cambridge
University Press, New York, 1994).

On return, the Savitzky–Golay-filtered profile is contained in the vector yf [1...mm]. Notice the somewhat
peculiar accessing of the coefficients cj via the c[(j ≥ 0 ? j+1 : nr +nl +2+ j)] construction in this routine.
This reflects the wrap-around storage of the coefficients, where c[1] = c0, c[2] = c1, . . ., c[nr + 1] = cnR

,
c[nr + 2] = c−nL

, c[nr + 3] = c−nL+1, . . ., c[nr + nl + 1] = c−1.

〈Routine for Savitzky–Golay filtering 37 〉 ≡
char sgfilter (double yr [],double yf [], int mm , int nl , int nr , int ld , int m)
{
int np = nl + 1 + nr ;
double ∗c;
char retval ;

#if CONVOLVE_WITH_NR_CONVLV /∗ Please do not use this . . . ∗/

c = dvector (1,mm); /∗ Size required by the NR in C convlv routine ∗/
retval = sgcoeff (c, np , nl , nr , ld ,m);
if (retval ≡ 0) convlv (yr ,mm , c, np , 1, yf);
free dvector (c, 1,mm);

#else /∗ . . . use this instead. (Strongly recommended.) ∗/

int j;
long int k;

c = dvector (1, nl + nr + 1); /∗ Size required by direct convolution ∗/
retval = sgcoeff (c, np , nl , nr , ld ,m);
if (retval ≡ 0) {
for (k = 1; k ≤ nl ; k++) { /∗ The first nl samples ∗/
for (yf [k] = 0.0, j = −nl ; j ≤ nr ; j++) {
if (k + j ≥ 1) {
yf [k] += c[(j ≥ 0 ? j + 1 : nr + nl + 2 + j)] ∗ yr [k + j];

}
}

}
for (k = nl + 1; k ≤ mm − nr ; k++) { /∗ Samples nl + 1 . . .mm − nr ∗/
for (yf [k] = 0.0, j = −nl ; j ≤ nr ; j++) {

36 ROUTINES USED BY THE PROGRAM SGFILTER §37

yf [k] += c[(j ≥ 0 ? j + 1 : nr + nl + 2 + j)] ∗ yr [k + j];
}

}
for (k = mm − nr + 1; k ≤ mm ; k++) { /∗ The last nr samples ∗/
for (yf [k] = 0.0, j = −nl ; j ≤ nr ; j++) {
if (k + j ≤ mm) {
yf [k] += c[(j ≥ 0 ? j + 1 : nr + nl + 2 + j)] ∗ yr [k + j];

}
}

}
}
free dvector (c, 1, nr + nl + 1);

#endif

return (retval); /∗ Returning 0 if successful filtering ∗/
}

This code is used in section 22.

38. Routines for removing preceding path of filenames. In this block all routines related to removing
preceding path strings go. Not really fancy programming, and no contribution to any increase of nu-
merical efficiency or precision; just for the sake of keeping a tidy terminal output of the program. The
strip away path () routine is typically called when initializing the program name string progname from the
command line string argv [0], and is typically located in the blocks related to parsing of the command line
options. The strip away path () routine takes a character string filename as argument, and returns a pointer
to the same string but without any preceding path segments.

〈Routine for removing preceding path of filenames 38 〉 ≡
〈Routine for checking for a valid path character 39 〉

char ∗strip away path (char filename [])
{
int j, k = 0;

while (pathcharacter (filename [k])) k++;
j = (−−k); /∗ this is the uppermost index of the full path+file string ∗/
while (isalnum ((int)(filename [j]))) j−−;
j++; /∗ this is the lowermost index of the stripped file name ∗/
return (&filename [j]);

}

This code is used in section 22.

39. In this program, valid path characters are any alphanumeric character or ‘.’, ‘/’, ‘\’, ‘_’, ‘−’, or ‘+’.

〈Routine for checking for a valid path character 39 〉 ≡
short pathcharacter (int ch)
{
return (isalnum (ch)∨ (ch ≡ ’.’)∨ (ch ≡ ’/’)∨ (ch ≡ ’\\’)∨ (ch ≡ ’_’)∨ (ch ≡ ’−’)∨ (ch ≡ ’+’));

}

This code is used in section 38.

§40 SGFILTER ROUTINES USED BY THE PROGRAM 37

40. The void showsomehelp(void) displays a brief help message to standard terminal output. This is
where the caller always should end up in case anything is wrong in the input parameters.

〈Routine for displaying a brief help message on usage 40 〉 ≡
〈Routine for displaying a single line of the help message 41 〉

void showsomehelp(void)
{
hl ("Usage: %s [options]", progname);
hl ("Options:");
hl (" −h, −−help");
hl (" Display this help message and exit clean.");
hl (" −i, −−inputfile <str>");
hl (" Specifies the file name from which unfiltered data is to be read.");
hl (" The input file should describe the input as two columns contain−");
hl (" ing x− and y−coordinates of the samples.");
hl (" −o, −−outputfile <str>");
hl (" Specifies the file name to which filtered data is to be written,");
hl (" again in a two−column format containing x− and y−coordinates");
hl (" of the filtered samples. If this option is omitted, the generated");
hl (" filtered data will instead be written to the console (terminal).");
hl (" −nl <nl>");
hl (" Specifies the number of samples nl to use to the ’left’ of the");
hl (" basis sample in the regression window (kernel). The total number");
hl (" of samples in the window will be nL+nR+1.");
hl (" −nr <nr>");
hl (" Specifies the number of samples nr to use to the ’right’ of the");
hl (" basis sample in the regression window (kernel). The total number");
hl (" of samples in the window will be nL+nR+1.");
hl (" −m <m>");
hl (" Specifies the order m of the polynomial to use in the regression");
hl (" analysis leading to the Savitzky−Golay coefficients. Typical");
hl (" values are between m=2 and m=6. Beware of too high values, which");
hl (" easily makes the regression too sensitive, with an oscillatory");
hl (" result.");
hl (" −ld <ld>");
hl (" Specifies the order of the derivative to extract from the ");
hl (" Savitzky−−Golay smoothing algorithm. For regular Savitzky−Golay");
hl (" smoothing of the input data as such, use ld=0. For the Savitzky−");
hl (" Golay smoothing and extraction of derivatives, set ld to the");
hl (" order of the desired derivative and make sure that you correctly");
hl (" interpret the scaling parameters as described in ’Numerical");
hl (" Recipes in C’, 2nd Edn (Cambridge University Press, New York,");
hl (" 1994).");
hl (" −v, −−verbose");
hl (" Toggle verbose mode. (Default: Off.) This option should always");
hl (" be omitted whenever no output file has been specified (that is");
hl (" to say, omit any −−verbose or −v option whenever −−outputfile or");
hl (" −o has been omitted), as the verbose logging otherwise will");
hl (" contaminate the filtered data stream written to the console");
hl (" (terminal).");

}

This code is used in section 22.

38 ROUTINES USED BY THE PROGRAM SGFILTER §41

41. In order to simplify the messaging, the hl (const char ∗format , . . .) routine acts as a simple front-end
merely for compactifying the code by successive calls to hl (. . .) rather than the full fprintf (stderr , . . .), still
maintaining all the functionality of string formatting in the regular printf () or fprintf () syntax.

〈Routine for displaying a single line of the help message 41 〉 ≡
void hl (const char ∗format , . . .){ va list args ; char

line [1024] ;
va start (args , format); /∗ Initialize args by the va start () macro ∗/
vsprintf (line , format , args) ;
va end (args); /∗ Terminate the use of args by the va end () macro ∗/
sprintf (line +strlen (line) , "\n") ; /∗ Always append newline ∗/
fprintf (stdout , "%s", line) ;
return; }

This code is used in section 40.

42. Routine for obtaining the number of coordinate pairs in a file. This routine is called prior to loading
the input data, in order to automatically extract the size needed for allocating the memory for the storage.

〈Routine for obtaining the number of coordinate pairs in a file 42 〉 ≡
long int num coordinate pairs (FILE ∗file)
{
double tmp ;
int tmpch ;
long int mm = 0;

fseek (file , 0L, SEEK_SET); /∗ rewind file to beginning ∗/
while ((tmpch = getc(file)) 6= EOF) {
ungetc (tmpch , file);
fscanf (file , "%lf",&tmp); /∗ Read away the x coordinate ∗/
fscanf (file , "%lf",&tmp); /∗ Read away the y coordinate ∗/
mm++;
tmpch = getc(file); /∗ Read away any blanks or linefeeds ∗/
while ((tmpch 6= EOF) ∧ (¬isdigit (tmpch))) tmpch = getc(file);
if (tmpch 6= EOF) ungetc (tmpch , file);

}
fseek (file , 0L, SEEK_SET); /∗ rewind file to beginning ∗/
return (mm);

}

This code is used in section 22.

§43 SGFILTER INDEX 39

43. Index.

__APPLE__: 12.
func : 12.
linux : 12.
unix : 12.

__VA_ARGS__: 12.
_CYGWIN_SIGNAL_H: 12.
a: 12, 30, 31, 36.
aim : 33.
aip : 33.
ans : 12, 35.
argc : 9, 13, 17.
args : 23, 41.
argv : 9, 13, 15, 17, 38.
b: 12, 30, 36.
big : 31.
c: 12, 36, 37.
ch : 39.
clock : 14.
convlv : 5, 6, 12, 35, 36, 37.
CONVOLVE_WITH_NR_CONVLV: 5, 6, 12, 18, 21, 37.
COPYRIGHT: 12, 17.
cos : 9.
ctime : 14.
c1 : 34.
c2 : 34.
d: 12, 31, 36.
data : 12, 32, 33, 34, 35.
data1 : 12, 33, 35.
data2 : 12, 33, 35.
DEFAULT_LD: 12, 16.
DEFAULT_M: 12, 16.
DEFAULT_NL: 12, 16.
DEFAULT_NR: 12, 16.
dmatrix : 12, 26, 29, 36.
dum : 31, 35.
dvector : 12, 18, 25, 31, 35, 36, 37.
EOF: 42.
EPSILON: 12, 31.
exit : 14, 17, 18, 20, 24, 25, 26, 31.
EXIT_SUCCESS: 13.
exp : 9.
f : 9.
fabs : 31.
fac : 36.
fclose : 18.
fft : 35.
fft1 : 12, 33, 35.
fft2 : 12, 33, 35.
file : 12, 16, 18, 20, 42.
filename : 12, 38.
fopen : 18.

format : 12, 23, 41.
four1 : 12, 32, 33, 34.
fprintf : 9, 14, 17, 20, 23, 41.
free : 27, 28, 29.
free dmatrix : 12, 29, 36.
free dvector : 12, 21, 28, 31, 35, 36, 37.
free ivector : 12, 27, 36.
freopen : 6, 20.
fscanf : 18, 42.
fseek : 42.
func : 9.
function name : 12, 23.
gauss : 9.
getc : 42.
gettimeofday : 23.
hl : 40, 41.
h1i : 34.
h1r : 34.
h2i : 34.
h2r : 34.
i: 26, 30, 31, 32, 34, 35.
ii : 30.
imax : 31.
imj : 36.
indx : 12, 30, 31, 36.
input filename : 16, 17, 18.
ip : 30.
ipj : 36.
isalnum : 14, 38, 39.
isdigit : 42.
isign : 12, 32, 33, 34, 35.
istep : 32.
ivector : 12, 24, 36.
i1 : 34.
i2 : 34.
i3 : 34.
i4 : 34.
j: 30, 31, 32, 33, 36, 37, 38.
jj : 33.
k: 9, 16, 25, 31, 36, 37, 38.
kk : 36.
ld : 11, 12, 16, 17, 19, 36, 37.
localtime : 23.
log : 9, 12, 17, 18, 19, 20, 23, 24, 25, 26, 31, 35, 36.
log printf : 12, 23.
logentry : 23.
lt : 23.
lubksb : 12, 30, 31, 36.
ludcmp : 12, 30, 31, 36.
m: 12, 16, 26, 29, 32, 35, 36, 37.
mag2 : 35.

40 INDEX SGFILTER §43

main : 9, 13, 16.
malloc : 24, 25, 26.
mm : 9, 12, 16, 18, 19, 20, 21, 36, 37, 42.
mmax : 32.
n: 12, 30, 31, 32, 33, 34, 35, 36.
nch : 12, 26, 29.
NCHMAX: 12, 16.
ncl : 12, 26, 29.
ncol : 26.
nh : 12, 24, 25, 27, 28, 29.
nl : 11, 12, 16, 17, 18, 19, 24, 25, 27, 28, 29, 36, 37.
nn : 12, 32, 33, 34.
nn2 : 33.
nn3 : 33.
no arg : 16, 17.
no2 : 35.
np : 12, 36, 37.
np3 : 34.
nr : 11, 12, 16, 17, 18, 19, 36, 37.
nrh : 12, 26, 29.
nrl : 12, 26, 29.
nrow : 26.
num coordinate pairs : 12, 18, 42.
optarg : 15.
output filename : 16, 17, 20.
pathcharacter : 38, 39.
pow : 9, 36.
printf : 23, 41.
progname : 15, 17, 18, 38, 40.
rand : 9.
RAND_MAX: 9.
realft : 12, 34, 35.
rem : 33.
rep : 33.
respns : 12, 35, 36.
retval : 9, 37.
SEEK_SET: 42.
sgcoeff : 12, 36, 37.
sgfilter : 5, 12, 19, 37.
showsomehelp : 17, 40.
sin : 9, 32, 34.
sprintf : 23, 41.
sqrt : 9.
srand : 9.
sscanf : 9, 17.
stderr : 41.
stdout : 6, 9, 17, 20, 23, 41.
strcmp : 14, 17, 18, 20.
strcpy : 14, 17.
strip away path : 12, 15, 17, 38.
strlen : 23, 41.
sum : 30, 31, 36.

SWAP: 32.
temp : 31.
tempi : 32.
tempr : 32.
theta : 32, 34.
time : 9, 23.
timeval : 23.
time0 : 23.
tm : 23.
tm hour : 23.
tm mday : 23.
tm min : 23.
tm mon : 23.
tm sec : 23.
tm year : 23.
tmp : 42.
tmpch : 42.
tv : 23.
tv usec : 23.
twofft : 5, 12, 33, 35.
TWOPI: 9.
u: 9.
ungetc : 42.
UNIX_LIKE_OS: 12, 20.
v: 9, 12, 24, 25, 27, 28.
va end : 23, 41.
va start : 23, 41.
var : 9.
verbose : 16, 17, 18, 19, 20.
VERSION: 12, 17.
vfprintf : 14.
vsprintf : 14, 23, 41.
vv : 31.
w: 9.
wi : 32, 34.
wpi : 32, 34.
wpr : 32, 34.
wr : 32, 34.
wtemp : 32, 34.
x: 9, 16.
xa : 9.
xmax : 9.
x1 : 9.
x2 : 9.
yf : 12, 16, 18, 19, 20, 21, 37.
yr : 12, 16, 18, 19, 21, 37.
z: 9.

SGFILTER NAMES OF THE SECTIONS 41

〈Allocate memory and read M samples of unfiltered data from file 18 〉 Used in section 13.

〈Deallocate memory 21 〉 Used in section 13.

〈Definition of variables 16 〉 Used in section 13.

〈Definitions of routines 22 〉 Used in section 13.

〈Filter raw data through the Savitzky–Golay smoothing filter 19 〉 Used in section 13.

〈Global variables 15 〉 Used in section 13.

〈Library inclusions 14 〉 Used in section 13.

〈Parse command line for options and parameters 17 〉 Used in section 13.

〈Routine for Fourier transformation of real-valued data 34 〉 Used in section 22.

〈Routine for Savitzky–Golay filtering 37 〉 Used in section 22.

〈Routine for allocation of double floating-point precision matrices 26 〉 Used in section 22.

〈Routine for allocation of double floating-point precision vectors 25 〉 Used in section 22.

〈Routine for allocation of integer precision vectors 24 〉 Used in section 22.

〈Routine for checking for a valid path character 39 〉 Used in section 38.

〈Routine for computation of coefficients for Savitzky–Golay filtering 36 〉 Used in section 22.

〈Routine for deallocation of double floating-point precision matrices 29 〉 Used in section 22.

〈Routine for deallocation of double floating-point precision vectors 28 〉 Used in section 22.

〈Routine for deallocation of integer precision vectors 27 〉 Used in section 22.

〈Routine for discrete Fourier transformation of real-valued data 32 〉 Used in section 22.

〈Routine for displaying a brief help message on usage 40 〉 Used in section 22.

〈Routine for displaying a single line of the help message 41 〉 Used in section 40.

〈Routine for error messaging 23 〉 Used in section 22.

〈Routine for numerical convolution 35 〉 Used in section 22.

〈Routine for obtaining the number of coordinate pairs in a file 42 〉 Used in section 22.

〈Routine for performing LU decomposition of a matrix 31 〉 Used in section 22.

〈Routine for removing preceding path of filenames 38 〉 Used in section 22.

〈Routine for simultaneous fast Fourier transformation of two data sets 33 〉 Used in section 22.

〈Routine for solving systems of linear equations by LU decomposition 30 〉 Used in section 22.

〈Write filtered data to file or terminal output 20 〉 Used in section 13.

〈 example.c 9 〉
〈 sgfilter.h 12 〉

SGFILTER

Section Page
Introduction . 1 1
The Savitzky–Golay smoothing filter . 2 3
Revision history of the program . 6 7
Compiling the source code . 7 8
Running the program . 8 10
Example of Savitzky–Golay filtering with the SGFILTER program . 9 11
Header files . 12 17
The main program . 13 19
Routines used by the program . 22 24
Index . 43 39

