81 DVLABEL INTRODUCTION 1

December 24, 2011 at 11:17

1. Introduction.

DVLABEL

Creates TeX source code for typesetting labels for digital video tapes
(Version 1.6 of August 10, 2005)

Written by Fredrik Jonsson

This CWEB' program generates TEX source code for typesetting of labels for digital video tapes (DV format,
typically used for hand-held video camera recorders).

Most people have not heard of the TEX system for typesetting mathematical text, and if they have, they
will most probably not use the system for creating things like labels for video tapes. However, the output
generated by TEX is in many cases absolutely superior in balance and visual clarity, and in order to benefit
from the compactness and beauty of text processed by TEX even for such basic things as labels for video
tapes, this program generates the necessary TEX code and even compiles it into printable PostScript.

The program is primarily designed to run in interactive mode, but via command-line parameters it also
supports batch-mode operation. A feature of the program is also that it is able to compile the generated
TeX source code into PostScript, using the DVIPS program.}

Copyright (© Fredrik Jonsson, 2003-2005. All rights reserved.

 For information on the CWEB programming language by Donald E. Knuth, as well as samples of CWEB
programs, see http://www-cs-faculty.stanford.edu/ knuth/cweb.html. For general information on
literate programming, see http://www.literateprogramming.com.

I The DVIPS program is copyrighted by Radical Eye Software, but is typically included in most TEX
distributions under UNIX, Linux, and Microsoft Windows; see the site http://www.radicaleye.com for
further information.

2 REVISION HISTORY OF THE PROGRAM DVLABEL 62

2. Revision history of the program.

2003-12-28

2003-12-29

2004-11-26

2004-11-27

2004-12-28

2005-01-01

2005-08-10

[v.1.0] <jonsson@uni-wuppertal.de>

First properly working version of the DVLABEL program. I got the idea of creating this
program from the audio-tape.ps PostScript code by Jamie Zawinski. This code is
a splendid example of how one can write a simple PostScript program with the help
of a regular ASCII editor, and by sending the PostScript program to the printer, one
gets a neat printout to be used for tape cassette labels, DAT, or video tapes. However,
whenever one has a new cassette to be labeled, one has to edit the PostScript source, and
for a rookie on PostScript programming this task is somewhat inconvenient. Therefore,
I decided to create something similar, but with a standalone program that could be
operated either in interactive mode, with the program asking for the specific information
to be entered in the label, or in batch mode. However, instead of directly generating
PostScript, I decided to go for a language that I know somewhat more in detail, namely
plain TEX, which also has the benefit of being a language which the author, Donald
E. Knuth, has decided to keep fixed in order to ensure future compatibility.

[v.1.1] <jonsson@uni-wuppertal.de>

Revised the leading blocks (definitions) of the generator of the TEX-code, in order to
have a more clearly structure of the labels. Included the \boxit example from the
TEX-book to have the face, flap, and spine of the labels neatly structured. Also finished
the parsing engine for the address and table of contents fields.

[v.1.2] <fredrik.jonsson@nmrc.ie>

Added support for supplying DVIPS options via the command line when invoking DVLA-
BEL. In order to parse for an arbitrary number of DVIPS options at the command line, it
is important to enclose the list of DVIPS options by quotes, hence forcing the DVLABEL
program to parse the set of options as one single string of characters. (The quotes are
only necessary if the number of DVIPS options are two or more.) Hence, for example, to
force DVIPS to generate output pages of US letter format and at a resolution of 720 dpi
one could invoke DVLABEL with dvlabel --dvipsopts "-tletter -D720" ... Also
slightly changed the way the input filename is used; now one can specify only the basic
filename, to which the DVLABEL program now automatically appends the suffix .dvl,
if necessary. Finally restructured the blocks related to scanning and saving code for
individual DV labels, in order to have the structure ready for making the program gen-
erally capable of scanning one single file containing an arbitrary number of labels, as
for instance if one would keep all records in one single text file.

[v.1.3] <fredrik.jonsson@nmrc.ie>

The DVLABEL program now parses multiple label records from the same input file. Also
added the useful feature of crop marks in the generated TEX output of the program.
In its current state, the program only generates labels in one single horizontal column;
this is something that I in the future versions will change into a [3 x 3] array of labels,
as soon as I get the vbox and hbox statements of the boxit definition right.

[v.1.4] <fredrik.jonsson@nmrc.ie>
Added the --headline and --1linethick options. Fixed a bug in the page output, which
previously caused TEX to complain about vertical underfill of the generated pages.

[v.1.5] <fredrik.jonsson@nmrc.ie>
Added the --cropmark and --edgeseparation options. Also fixed a bug in the vertical
label dimensions. Added the log() way of displaying log and error messages.

[v.1.6] <fj@phys.soton.ac.uk>

Back in Southampton with my family after a hot summer. Wrote the code for the
strip_away_path () routine originally for the POINCARE program and immediately de-
cided to adopt the code also into the DVLABEL and MAGBRAGG programs in order

82 DVLABEL REVISION HISTORY OF THE PROGRAM 3

to finally solve the problem with long path strings that appear in the program name
string whenever poincare is called with an explicit path specified at the command line.
The call to the strip_away_path() routine is located in the beginning of the block for
command line parsing.

4 COMPILING THE SOURCE CODE DVLABEL 83

3. Compiling the source code. The program is written in CWEB, generating ANSI-C conforming
source code and documentation as TEX-source, and is to be compiled using the enclosed Makefile, leaving an
executable file dvlabelf and a PostScript file dvlabel.ps (the document you currently are reading), which
contains the full documentation of the program:

#

Makefile designed for use with ctangle, cweave, gcc, and plain TeX.
#

Copyright (C) 2003, Fredrik Jonsson <jonsson@uni-wuppertal.de>

#

CTANGLE = ctangle

cC = gcc

CCOPTS = -02 -Wall -ansi -pedantic # follow ISO C89 (ANSI) strictly
LNOPTS = -1m

CWEAVE = cweave

TEX = tex

DVIPS = dvips

DVIPSOPT = -ta4 -D1200

all: dvlabel.exe dvlabel.ps

dvlabel.exe: dvlabel.o # generate the executable file
$(cC) $(CCOPTS) -o dvlabel dvlabel.o $(LNOPTS)

dvlabel.o: dvlabel.c # generate the object file
$(CC) $(CCOPTS) -c dvlabel.c

dvlabel.c: dvlabel.w # generate C code from the CWEB source
$(CTANGLE) dvlabel

dvlabel.ps: dvlabel.dvi # generate the PostScript documentation
$(DVIPS) $(DVIPSOPT) dvlabel.dvi -o dvlabel.ps

dvlabel.dvi: dvlabel.tex # generate the device-independent documentation
$(TEX) dvlabel.tex

dvlabel.tex: dvlabel.w # generate plain TeX code from the CWEB source
$ (CWEAVE) dvlabel

clean:
-rm -Rf *.c *.0 *.exe
-rm -Rf *.tex *.aux *.log *.toc *.idx *.scn *.dvi

1 On platforms running Windows NT, Windows 2000, or any other operating system by Microsoft, the
executable file will instead automatically be called dvlabel.exe.

84 DVLABEL RUNNING THE PROGRAM 5

4. Running the program. The program is entirely controlled by the command line options supplied
when invoking the program. To start the program in interactive mode, simply run dvlabel from the
command line, without any command line options.

Example I: In the following excerpt from an interactive terminal session, where a leading asterisk (*) in a
line indicates the user-supplied input to the program, a DV label is generated as Encapsulated PostScript,
stored in a file named fig.eps.

[dvlabel> dvlabel -c -e -o fig

This is dvlabel, Version 1.4

Specify table of contents of the DV tape

[Enter text and finish with single dot on blank line]:
* Table of contents

* This is line number one

* This is line number two

* This is line number three

*

Specify time stamp of DV tape. This is typically

the last date that appears as time stamp in the

recorded tape. [Press enter to use the current date]

* Monday 29/12/2003

Specify title of the DV tape [Press enter to leave blank title]:
* Beavis and Butthead

Specify author of the DV tape [Press enter to leave blank]:

* Fredrik Jonsson

Specify address of author of the DV tape

[Enter text and finish with single dot on blank line]:

* Storgatan 77

* SE-47111 Sunne, Sweden

*

Specify email of author of the DV tape [Press enter to leave blank]:
* hmv@hotmail.com

The generated DV label fig.eps looks like this:

Monday 29/12/2003
Table of contents

This is line number one
This is line number two
This is line number three

Monday 29/12/2003
Beavis and Butthead

Digital Video by Fredrik Jonsson
Storgatan 77

SE-47111 Sunne, Sweden
hmv@hotmail.com

6 RUNNING THE PROGRAM DVLABEL 84

In this example, the —~c command line option specifies that the program should compile the generated TEX
code, -e that it also should attempt to generate the output as Encapsulated PostScript, and -o fig that
the generated files all should have the base name “fig”, that is to say, the program will use fig.tex for
the generated TEX-code, fig.dvi for the generated device-independent (DVI) output, and fig.eps for the
generated Encapsulated PostScript (EPS) image of the DV label. The command for invoking the DVLABEL
program can equivalently be written in a more extensive form as dvlabel --compile --eps --outputfile
fig.

The TEX-code that the program generates (from which the Encapsulated PostScript subsequently is
generated) is stored in the file fig.tex, which contains

% File: fig.tex
% TeX code automatically generated by dvlabel, v.1.4,
% Mon Dec 29 15:46:36 2003
% Copyright (C) Fredrik Jonsson, 2003
)
\font\eightcmssqeight=cmssq8
\font\tencmssqten=cmssq8 at 10 truept
\font\defaultfacefont=cmtt8
\font\defaultflapfont=cmtt8
\def\monthname\ifcase\monthy
\or Jan\or Feb\or Mar\or
Apr\or May\or Jun’
\or Jullor Aug\or Sep\or
Oct\or Nov\or Dec%
\fi
\def\fullmonthname\ifcase\month,
\or January\or February\or
March\or Aprily
\or May\or June\or July\or
August\or September
\or October\or November\or

§4

DVLABEL

December\fi
\def\today\fullmonthname\space\number\day, %

\space\number\year
\def\timestampMonday 29/12/2003
\def\titleBeavis and Butthead
\def\authorFredrik Jonsson
\def\emailhmv@hotmail.com
\nopagenumbers
\newdimen\facewidth
\newdimen\faceheight
\newdimen\spineheight
\newdimen\flapheight
\newdimen\edgeseparation
\facewidth=60mm
\faceheight=40mm
\spineheight=12mm
\flapheight=20mm
\edgeseparation=1pt
\def\boxit#1\vbox\hrule\hbox%

\vrule\kernipt\vbox\kernlpt#1\kernlipty,
\kernipt\vrule\hrule
\parindent Opt

RUNNING THE PROGRAM

7

8

RUNNING THE PROGRAM

% Define the outline of the face of the label
\setboxl=\hbox to \facewidth,
\vbox to \faceheight},
\hbox\defaultfacefont\timestamp\hfily
\vskip -3pt\hbox\defaultfacefont
Table of contents\hfil},
\vskip -3pt\hbox\defaultfacefont
This is line number one\hfil,
\vskip -3pt\hbox\defaultfacefont
This is line number two\hfil},
\vskip -3pt\hbox\defaultfacefont
This is line number three\hfil},
\vfil\hfil

% Define the outline of the spine of the label
\setbox2=\hbox to \facewidth},

\vbox to \spineheight
\hbox\bf\timestamp\hfil},
\hbox\bf\title\hfily

\vfil\hfil

% Define the outline of the flap of the label
\setbox3=\hbox to \facewidth,
\vbox to \flapheight?,
\hbox\defaultflapfont Digital Video by
\author\hfily,
\vskip -3pt\hbox\defaultflapfont
Storgatan 77\hfil},
\vskip -3pt\hbox\defaultflapfont
SE-47111 Sunne, Sweden\hfilY
\vskip -3pt\hbox\defaultflapfont %
<\email>\hfil¥,
\vfil\hfil

\def\dvlabel\boxit\boxit\box1%
\vskip\edgeseparation\boxit\box2/
\vskip\edgeseparation\boxit\box3

\dvlabel

\bye

DVLABEL

§4

84 DVLABEL RUNNING THE PROGRAM 9

Example II: Another way of using the program is in batch mode, where the input instead is read from a
text file. In the following example, the file named fig.asc contains the following text (compare with the
interactive session on the previous pages):

Table of contents

This is line number one
This is line number two
This is line number three

Monday 29/12/2003
Beavis and Butthead
Fredrik Jonsson
Storgatan 77
SE-47111 Sunne, Sweden
hmv@hotmail.com
When the DVLABEL program is launched with the above file specified as the input to read, via the commandf

[dvlabel> dvlabel -c -e -i fig.asc -o fig

the same output as in the previous example will be generated.

1 In similar to the previous example, this command for invoking the DVLABEL program can similarly written
in a more extensive form as dvlabel --compile --eps --inputfile fig.asc --outputfile fig.

10 THE MAIN PROGRAM DVLABEL

5. The main program. Here follows the general outline of the main program.

#include
#include
#include
#include
#include
#include
#include

<time.h>
<sys/time.h>
<stdio.h>
<stdarg.h>
<stdlib.h>
<string.h>
<ctype.h>

#define VERSION "1.6" /* Program revision */
#define DEFAULT_DVIPSOPTS "-ta4,,-D1200" /* Default DVIPS options */
#define DEFAULT_LINETHICKNESS (0.5) /* Default line thickness in pt =/
#define DEFAULT_CROPLINETHICKNESS (0.15) /* Crop line thickness in pt */
#define DEFAULT_EDGESEPARATION (1.0)
#define MAXCHAR (128) /* Maximum allowed number of characters on each line */
#define SUCCESS (0) /* Return code for successful program termination */
#define FAILURE (1) /* Return code for unsuccessful program termination */
#define INSTREAM (infile_specified ? infile : stdin)
#define OUTSTREAM (outfile_specified ? outfile : stdout)
#define log(...)log_printf (__func__,__VA_ARGS__)

(Global variables 6)

(Subroutines 7)

int main(int arge, char xargu[])

{

Local variables 14)
Parse command line 15)

Open files for reading 18)
Open files for writing 19)

(
(
(Display banner 16)
(
(
(

Save preamble source code 29)
num_labels = 0;
while (newlabel (INSTREAM)) {
num_labels ++;
(Scan text lines of one label from input stream 22)
if (num_labels = 1) {
if (generate_crop-marks) {

}
}

(Write vertical crop marks with width measure 32)
(Write horizontal crop marks with height measure 33)

(Save label source code 30)
if (num_labels = 2) {
if (generate_crop-marks) {

}
}

(Write horizontal crop marks with height measure 33)

if (num_labels = num_labels_per_page) {
if (generate_crop-marks) {

}

(Write horizontal crop marks with height measure 33)
(Write vertical crop marks with width measure 32)

(Close output page 31)
num_labels = 0;

85

85 DVLABEL THE MAIN PROGRAM 11

}

Close files 20)
Compile source code 35)
return (SUCCESS);

}
(Save closing source code 34)
(
(

6. Declaration of global variables. The only global variables allowed in my programs are optarg, which is
the string of characters that specified the call from the command line, and progname, which simply is the
string containing the name of the program, as it was invoked from the command line.
(Global variables 6) =

extern char xoptarg;

char xprogname;

This code is used in section 5.

7. Declarations of subroutines used by the program.

(Subroutines 7) =
(Routine for logging and error messaging 8)
(Routine for displaying help message 9)
(Scan for beginning of new label 11)
(Routine for removing preceding path of filenames 12)

This code is used in section 5.

12 THE MAIN PROGRAM DVLABEL 68

8. The void log_printf (const char xfunction_name,const char *format, ...) routine writes formatted
entries to standard output, displaying time and calling routine in a coherent manner. Notice that although
the log_printf () routine is the one which performs the actual messaging, the log() macro (defined in the
header file) is the preferred way of accessing this routine, as it provides a more compact notation and
automatically takes care of supplying the reference to the name of the calling function.

Also notice that the const char type of the last two input pointer arguments here is absolutely essential
in order to pass strict pedantic compilation with GCC.

The routine accepts two input parameters. First, function_name which should be the name of the calling
function. This is to ensure that any displayed error messages are properly matched to the issuing routines.
Notice, however, that the log () macro (which is the preferred way of displaying error messages) automatically
takes care of supplying the proper function name. Second, format, which simply is the format and message
string to be displayed, formatted in the C-standard printf () or fprintf () syntax.

(Routine for logging and error messaging 8) =
void log_printf (const char xfunction_name, const char xformat, ...)
{
va_list args;
time_t time0;
struct tm It;
struct timeval tv;
char logentry[1024];
gettimeofday (&tv, A);
time (&time0);
It = xlocaltime (&time0);
sprintf (logentry, "%02u’%02u%02u,,%02u: %02u: %02u.%03d,", lt.tm_year — 100, It .tm_mon + 1,
It.tm_mday, lt .tm_hour, lt .tm_min, lt.tm_sec, tv.tv_usec /1000);
sprintf (logentry + strlen(logentry), " (hs)u", function_name);
va_start (args, format); /* Initialize args by the va_start() macro */
vsprintf (logentry + strlen(logentry), format, args);
va_end (args); /* Terminate the use of args by the va_end () macro */
sprintf (logentry + strlen (logentry), "\n"); /* Always append newline */
forintf (stdout, "%s", logentry);
return;

}

This code is used in section 7.

§9

9.

DVLABEL THE MAIN PROGRAM

Routines for displaying help message.

{ Routine for displaying help message 9) =
(Routine for displaying a single line of the help message 10)

void showsomehelp (void)

{

hl(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hl("Luuucode. Default: off");
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(
hi(

"Usage:%sy[options]", progname);

'When, ,invoked, without any ,command, line options, this program enters")
"interactive mode.");

"Options:");

" =i, -—inputfile <str>");

uuuuSpecifies the file where jto read the label text strings, entered in")
uuuuayformat ,corresponding, to jthe input order as would, have been")

" uuuentered in interactive mode." L

" -0, ~-outputfile <str>");
"uuuuSpe01f1esutheuf1leuwhereutousaveutheugenerateduTeXusourceucodeufor")
uuuuthelabel . whenever this option is omitted, the generated source")
uuuucode will be written, to standard terminal, output, instead. Notice")
"uuuuthatutheunameuspec1f1eduu31nguth1suopt1onu1suuseduasutheu*base"L
"uuuuname*uforutheugenerateduoutput,uthlsumeansuthatutheuTeXuf11e")
"Luuuautomatically willget,. tex assuffix, the DVIfile.dvi, etc. ")
"uuuuForuexample,ulfuyouuwantutouhaveuyouruTeXuoutputustoredulntouauf11e")

"Uuuumamed, say, .’ foo.tex’, justspecify,,’—o foo’ %

" ~H,,—-headline");

"LuuuToggle display of generation time and input,source in page header");
"Uuuuofthe generated TeXcode. Default: uoff“)

" -C,,——cropmarks");
"uuuuToggleudlsplayuofucropumarksu(allgnmentumarks)ulnutheugenerateduTeX")
"~t,u—-linethick <f>");
"uuuUseylinethickness of <f> typographic points,in generating the boxes");
" uuuof the label. (One point, or_pt, equals to,1/72.27 inch.)");

" -s, ——edgeseparation <f>");

"uuuInsert extra space of ,<f> typographic points between the text boxes");
"Uuuuatythe folded jedges of ;the label. This;is useful when, for ,example, “)
" uuuthick paper,is used. By changing the line thickness, the internal");
"uuuumarginsof jthe label are also changed, since the inner ,edge-to- edge“)
" uuudistance between the lines of jthe inner and jouter boxes are linked");

" uuutoube twice the value of the line thickness. The correction of")

" uuuinner bounding boxes of the label text,is automatically adjusted, so");
"uuuuasutouensureuthatutheuoveralluouterudlmens1onsuofutheu1abeluare“)

" uuounchanged. ");

" -c, ——compile");

n

uuuuIryutocompile the generated, ,TeX ,code. This requires, DVIPS to jbe")

"Uuuuinstalled,on ;your system, see www.radicaleye.com for further info.')

" -e,u——eps");

"Lu HWhenucompllingutheugenerateduTeXucode,ugenerateuEncapsulated")
"LuuuuPostScript (EPS) instead, of jthe default regular PostScript. ")

" -d, --dvipsopts,<str>");

"UuuuWhen ,compiling the generated, ,TeX ,code, juse <str> as options to be")
"Luuusupplied to DVIPS. uInuorderutouparseuforuanuarb1traryunumberuof")
"LuuuDVIPS options at the ,command, line, ultu1sulmportantutouencloseuthe")

"Uuuulistyof DVIPS, joptions by quotes. uHence,uforuexample,utouforceuDVIPS“)

13

14

}

hi(
hi(
hi(
hi(
hi(
hl(",-v, —-verbose");
hi(
hi(
hi(
hi(

THE MAIN PROGRAM DVLABEL 89

"Uuuutougenerate joutputpages 0f US letter format and at a resolution of");

"uuuu720udpiuOneuCoulduinvokeuDVLABELuWith")7
"uuuuuuuuuudvlabelu__dvipsoptSu\ "_tletteru_D720\" "),

"LuuuThe quotes are only necessary if the number of DVIPS options are");
" uuutwoor more. Default: ,-D1200,~ta4 (1200, DPI on A4 paper).");
"LuuuToggle verbose mode. Default: off");

" ~h,,——help");

"LuuuDisplay this help message and exit,clean.");

"\nCopyright,,(C) ,2003-2011 Fredrik Jonsson <http://jonsson.eu>");

This code is used in section 7.

10.

In order to simplify the messaging, the hi(const char xformat, ...) routine acts as a simple front-end

merely for compactifying the code by successive calls to hl(...) rather than the full fprintf (stderr, ...), still
maintaining all the functionality of string formatting in the regular printf () or fprintf () syntax.

(Routine for displaying a single line of the help message 10) =

void hi(const char xformat, ...){ va_list args; char
line [1024] ;
va_start(args, format); /* Initialize args by the va_start() macro =/
vsprintf (line , format, args) ;
va_end (args); /* Terminate the use of args by the va_end() macro */
sprintf (line +strlen (line), "\n") ; /* Always append newline */
forintf (stdout,"%s", line) ;
return; }

This code is used in section 9.

811 DVLABEL THE MAIN PROGRAM 15

11. Scan the input stream for a statement on what to do next, that is to say, either to start generating a
new label (if the character ‘n’ is present, in which case the newlabel routine returns 1) or quit the program
(if the character ‘q’ is present, in which case the newlabel routine returns 0). The newlabel routine also takes
care of scanning away any trailing blanks or other characters from the input stream until a carriage return
character is found, also removing this before return.
(Scan for beginning of new label 11) =

short newlabel (FILE xinstream)

{

char ch;

forintf (stdout, "Create _new label record or_ quit?\n");
forintf (stdout, " [’n’=new label,/,’q’=quit] :\n");
forintf (stdout, "**");

while ((ch = fgetc(instream)) =) ; /% get rid of leading blanks */

if (ch =’n’) {
while ((ch = fgetc(instream)) # >\n’) ; /x get rid of trailing characters */
return (1);

}

else if (ch =q’) {
while ((ch = fgetc(instream)) # °\n’) ; /* get rid of trailing characters */
return (0);

}

else {
log("%s:_Error: Unrecognized input_stream control,character ’%c’.\n", progname, ch);
exit (FAILURE);

}

}

This code is used in section 7.

12. Routines for removing preceding path of filenames. In this block all routines related to removing
preceding path strings go. Not really fancy programming, and no contribution to any increase of nu-
merical efficiency or precision; just for the sake of keeping a tidy terminal output of the program. The
strip_away-path () routine is typically called when initializing the program name string progname from the
command line string argv[0], and is typically located in the blocks related to parsing of the command line
options. The strip_away_path () routine takes a character string filename as argument, and returns a pointer
to the same string but without any preceding path segments.

{Routine for removing preceding path of filenames 12) =
(Routine for checking for a valid path character 13)

char xstrip_away_path(char filename|])

{
int j, k=0;
while (pathcharacter (filename[k])) k++;
j=(—kK); /* this is the uppermost index of the full path-+file string */
while (isalnum ((int)(filenamelj]))) j—;
j++; /* this is the lowermost index of the stripped file name =/
return (&filenamelj]);
}

This code is used in section 7.

16 THE MAIN PROGRAM DVLABEL §13

13. In this program, valid path characters are any alphanumeric character or ‘.’ ‘/’, ‘\’, ‘_’, ‘=’ or ‘+’.

{Routine for checking for a valid path character 13) =
short pathcharacter (int ch)

{
return (isalnum(ch)V (ch =.°)V(ch =/)V(ch ="\\")V(ch="_")V(ch="-")V(ch =+7));

}

This code is used in section 12.

§14 DVLABEL DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM 17

14. Declaration of local variables of the main program. Here num_labels is a counter that is used
for determining whenever a page brake in the generated TEX code is to appear, in order to give a nice output
with a [3 x 1] array of labels.

(Local variables 14) =
time_t now = time(A);
long j, k, n, num_address_lines, num_toc_lines, num_labels, num_labels_per_page = 4;
int no_arg, tmpch;
FILE xinfile = A, xoutfile = A;
char inputfilename[MAXCHAR] = "", outputfilename [MAXCHAR| = "" | tmpstr[MAXCHARJ;
char dvipsopts [MAXCHAR] = DEFAULT_DVIPSOPTS;
char timestamp[MAXCHAR| = "\today", title[MAXCHAR] ="";
char author[MAXCHAR] = "", email [MAXCHAR] = "";
char address[10 « MAXCHAR] = "", toc[50 * MAXCHAR] = "";
short done, verbose =0, compile =0, eps_output = 0;
short headline = 1, generate_crop_-marks = 1;
short infile_specified = 0, outfile_specified = 0, dvipsopts_specified = 0;
float linethickness = DEFAULT _LINETHICKNESS;
float clthick = DEFAULT_CROPLINETHICKNESS;
float edgeseparation = DEFAULT_EDGESEPARATION;
float facewidth, faceheight, spineheight, flapheight;
float ifacewidth, ifaceheight, ispineheight, iflapheight;

This code is used in section 5.

18 PARSING COMMAND LINE OPTIONS DVLABEL §15

15. Parsing command line options. All input parameters are passed to the program through com-
mand line options and arguments to the program. The syntax of command line options is listed whenever
the program is invoked with the --help option at startup, or whenever an error occurs in the input.

(Parse command line 15) =
{

progname = strip_away_path (argv[0]);

no_arg = argc;

while (——arge) {

if (=stremp (argv[no-arg — arge], "-o") V =stremp (argv[no_arg — argel, "--outputfile")) {

——argc;
strepy (outputfilename, argv [no_arg — argcl);
outfile_specified = 1;

else if (—stremp (argv[no_arg — arge], "-i") V =stremp (argv[no-arg — argel, "--inputfile")) {
——argc;
strepy (inputfilename, argv[no_arg — arge]);
infile_specified = 1;

else if (—stremp (argv[no_arg — arge], "-v") V =stremp (argv[no_arg — argcl, "--verbose")) {
verbose = (verbose 70 : 1);

}

else if (—stremp(argv[no_arg — arge],"~h") V =stremp (argv[no_arg — arge], "--help")) {
showsomehelp();
exit (SUCCESS);

else if (—stremp(argv[no_arg — arge], "-H") V =stremp (argv[no_arg — arge], "--headline")) {

headline = (headline 7 0 : 1);

else if (—stremp (argv[no_arg — arge], "-C") V =stremp (argv[no-arg — arge], "--cropmarks")) {
generate_crop_marks = (generate_crop-marks 7 0 : 1);
¥
else if (—stremp (argv[no_arg — arge], "-t") V —stremp (argv[no_arg — argel], "--linethick")) {
——argc;
if (—sscanf (argv[no_arg — arge], "hE", &linethickness)) {
log ("Error,in linethickness argument.");
exit(1);

}

else if (—stremp (argv[no_arg — argcel, "=s") V —stremp (argv [no-arg — argc], "--edgeseparation")) {
—argc;
if (—sscanf (argv[no_arg — arge], "%hE", &edgeseparation)) {
log ("Error,in edgeseparation argument.");
exit (1);

else if (—stremp(argv[no_arg — arge], "-c") V —stremp (argv[no_arg — argcel, "--compile")) {
compile = (compile 70 : 1);

else if (—stremp (argu[no_arg — arge], "-e") V —stremp (argv[no-arg — argc], "--eps")) {
eps_output = (eps_output 7 0 : 1);

}

else if (—stremp (argv[no_arg — arge], "-a") V =stremp (argv[no-arg — argel, "--dvipsopts")) {

§15 DVLABEL PARSING COMMAND LINE OPTIONS

——argc;
strepy (dvipsopts, argu [no_arg — argcl);
dvipsopts_specified = 1;

else {
log("Error: Unknown option,’%s’.", argv[no_arg — argc));
showsomehelp();
ezit (FAILURE);

}

if (verbose A —outfile_specified) {

fprintf (stdout, "You _have specified verbose mode_ without any specification o\
f\n""a_ file where to save the generated TeX source code. This me\
ans\n" "that_any program comments that appear, due_ to the verbose m\
ode,\n""will be mixed_ with the_ source,code. It is highly recommende\
dythat\n" "you either jturn off verbose mode or specify a file where to\
usave\n" "the generated output, (using the —o_or —-outputfile option).\n");

forintf (stdout, "In order to_make a ,clean output, the TeX code is separately)\
\n""enclosed, in the blocks below.\n");

if (verbose A dvipsopts_specified) {
forintf (stdout, "Specified options for later juse_ with DVIPS: ");
forintf (stdout, "%s\n", dvipsopts);
}
}

This code is used in section 5.

16. Display a banner at start-up of the program.
(Display banner 16) =

forintf (stdout, "This,is ks, Version, %s\n", progname, VERSION);

This code is used in section 5.

19

20 OPENING AND CLOSING FILES FOR DATA OUTPUT DVLABEL 817

17. Opening and closing files for data output.

18. Open files for reading. In order to read the text to typeset from an external file rather than the
default standard input stream stdin, the name of the input file is specified with the -i or —-inputfile
command line options. If the filename as specified on the command line does not exist, then the program
will instead try to open a file with the suffix .dvl concatenated to the name. This way, the program will
accept short-hand filenames as well, in a way analogous to the input syntax rules of, for example, the TEX
program. If no input file can be opened, an error message is displayed and the program will exit with return
value FAILURE.

(Open files for reading 18) =

if (infile_specified) {
if ((infile = fopen (inputfilename,"r")) = A) {
if ((infile = fopen (strcat (inputfilename, " .dvl"),"r")) = A) {
log("Could not open, file ks for reading!", inputfilename);
exit (FAILURE);

}

fseek (infile, Or,, SEEK_SET);
if (verbose) {
log("0Opened, input_ file ks for reading.", inputfilename);

}

else {
if (verbose) log("No input filename specified(Entering interactive mode).");
}
}

This code is used in section 5.

19. Open files for writing.
(Open files for writing 19) =

if (outfile_specified) {
sprintf (tmpstr, "%s . tex", outputfilename);
if ((outfile = fopen(tmpstr,"w")) = A) {
log ("Could not open, file %s for writing!", tmpstr);
exit (FAILURE);
¥
fseek (outfile, Or,, SEEK_SET);
if (verbose) {
log ("Opened output file ks for writing.", outputfilename);
}
}
else {
if (verbose) {
log("No output, filename specified.");
log("Will write_generated TeX_ output to standard terminal, output.");
}
}
}

This code is used in section 5.

§20 DVLABEL OPENING AND CLOSING FILES FOR DATA OUTPUT 21

20. Close all open files.
(Close files 20) =
{
if (infile_specified) fclose(infile);
if (outfile_specified) fclose(outfile);
}

This code is used in section 5.

22 READING INPUT AS SUPPLIED BY THE USER DVLABEL §21

21. Reading input as supplied by the user.

22. Parsing the input as supplied by the user. When reading the input, the DVLABEL program makes use
of either the stdin stream (in the case of interactive mode), or the file pointed out by the infile pointer (in
the case of processing of an input text file). In the latter case, the syntax of the supplied file is identical to
the syntax as if operating the program in interactive mode, with every newline character (/n) interpreted as
an end-of-line of a corresponding interactive input.

Example: [TO BE INSERTED]

As the individual lines of text generally contain different number of characters, the feedline character /n
of standard C is throughout the program used to keep track of the end of line. (This is more convenient than
keeping track of the indvidual line widths in, for example, and array of integers.)

(Scan text lines of one label from input stream 22) =
{

Read table of contents 23)

Read time stamp 24)

Read title 25)

Read author name 26)

Read address 27)

Read email address 28)

(
(
(
(
(
(

}

This code is used in section 5.

§23 DVLABEL READING INPUT AS SUPPLIED BY THE USER 23
23. Parse for the table of contents of the tape. The syntax for specifying the table of contents is similar
to that of the address, with arbitrary number of lines of text. The input is ended by a single dot on a new
line, in similar to the way of entering, for example, email messages in terminal mode using the basic engine
of sendmail on regular UNIX and Linux systems.

(Read table of contents 23) =
{
forintf (stdout, "Specify table of contents of the DV tape\n");

forintf (stdout, " [Enter text_ and finish with single dot_on blank line]:\n");
done = 0;

n = 0;

num_toc_lines = 0;

while (—done) {
forintf (stdout, "**x");

while ((tmpch = fgetc(INSTREAM)) = *\,’) ; /* Get rid of leading blanks */
ungetc (tmpch, INSTREAM);

k=0;

while ((tmpstr[k++] = fgetc(INSTREAM)) # ’\n’) ; /% Read line */

if (k>1) { /+ If more text than just spaces and a linefeed character */
if ((tmpstr[0]="2.7) A (tmpstr[1] =°\n’)) {
done = 1;
}
else {
for (j=0; j <k; j++) toc[n + j] = tmpstr[j];
if (1=0) toc[n+j]="’\n’;
n=mn-+j; /x Keep track of last index of the toc array */
num_toc_lines ++;

}

else { /* If just spaces and a linefeed character x/
toc[n] = ’\n’; /* Blank line of table-of-contents field */

}

if (verbose) {
fprintf (stdout, "%s: Counted, %1d, number of table-of-contents lines.\n", progname,
num_toc_lines);
fprintf (stdout, "Table of contents:\n");
n = 0;
for (k =1; k < num_toc_lines; k++) {
for (j =mn; toclj] # ’\n’; j++) forintf (stdout, "%he", toc[j]);
forintf (stdout, "\n");
n=7j+1;
}
}
}

This code is used in section 22.

24 READING INPUT AS SUPPLIED BY THE USER DVLABEL §24

24. Parse for the time stamp to be used.
{Read time stamp 24) =
{
forintf (stdout, "Specify time stamp of DV tape. This_ is_ typically\n");
forintf (stdout, "the last date that_ appears as time_stamp_ in the\n");
forintf (stdout, "recorded, tape. [Press enter to use the current date]l\n");
(
(
(

forintf (stdout, "**");
while (tmpch fgetc(INSTREAM)) = *)°) ; /* Get rid of leading blank spaces */
ungetc (tmpch, INSTREAM);
k=0;
while ((tmpstr[k++] = fgetc(INSTREAM)) # ’\n’) ; /* Read line */
if (k>1) /* If more text than just spaces and a linefeed character x/
for (j=0; j <k; j++) timestamplj] = tmpstr[j];
else /*x If just spaces and a linefeed character =/
for (j=0; j<T7; j++) timestamp[j] = "\\today\n"[j];

if (verbose) {
forintf (stdout, "Time stamp: ");
for (j = 0; timestamp[j] # *\n’; j++) fprintf (stdout,"%c", timestamp|j]);
forintf (stdout, "\n");
}
}

This code is used in section 22.

25. Parse for the title to be used.
(Read title 25) =

{

forintf (stdout, "Specify title of the DV tape,[Press_enter to leave blank title]:\n");
forintf (stdout, "**");
(
(

while ((¢tmpch = fgetc(INSTREAM)) = *\,’) ; /* Get rid of leading blank spaces */
ungetc (tmpch, INSTREAM);
k=0;
while ((tmpstr[k++] = fgetc(INSTREAM)) # ’\n’) ; /* Read line */
if (k>1) /+ If more text than just spaces and a linefeed character */
for (j =0; j <k; j++) title[j] = tmpstr|[j];
else /* If just spaces and a linefeed character x/

title[0] = *\n’; /* Blank title */
if (verbose) {
forintf (stdout, "Title: ");
for (j = 0; title[j] # >\n’; j++) fprintf (stdout, "%c", title[j]);
forintf (stdout, "\n");

}

This code is used in section 22.

626

26.

DVLABEL READING INPUT AS SUPPLIED BY THE USER

Parse for the author name to be used.

(Read author name 26) =

{

}

forintf (stdout, "Specify author of the DV tape[Press_enter to leave blank]:\n");
forintf (stdout, "**");
while ((tmpch = fgetc(INSTREAM)) = °,°) ; /* Get rid of leading blank spaces x/
ungetc (tmpch, INSTREAM);
k=0;
while ((¢tmpstr[k++] = fgetc(INSTREAM)) # ’\n’) ; /* Read line */
if (k>1) /* If more text than just spaces and a linefeed character */
for (j=0; j <k; j++) author[j] = tmpstr[j];
else /* If just spaces and a linefeed character x/

author[0] = ’\n’; /* Blank author field x/
if (verbose) {
fprintf (stdout, "Author: ");
for (j = 0; author[j] # ’\n’; j++) forintf (stdout, "%c", author[j]);
forintf (stdout, "\n");

}

This code is used in section 22.

25

26 READING INPUT AS SUPPLIED BY THE USER DVLABEL 827

27. Parse for the address to be used. The syntax for specifying the address is similar to that of the table of
contents, with arbitrary number of lines of text. The input is ended by a single dot on a new line, in similar
to the way of entering, for example, email messages in terminal mode using the basic engine of sendmail on
regular UNIX and Linux systems.

(Read address 27) =

forintf (stdout, "Specify address of jauthor of the DV tape\n");

forintf (stdout, " [Enter text_ and finish with single dot_on blank line]:\n");
forintf (stdout, "**");

done = 0;

n = 0;

num_address_lines = 0;

while (—done) {

while ((tmpch = fgetc(INSTREAM)) = *\,’) ; /* Get rid of leading spaces */
ungetc (tmpch, INSTREAM);
k=0;
while ((tmpstr[k++] = fgetc(INSTREAM)) # ’\n’) ; /% Read line */
if (k>1) { /+ If more text than just spaces and a linefeed character */

if ((tmpstr[0]=2.7) A (tmpstr[1] =°\n’)) {

done = 1;
}
else {

for (j=0; j <k; j++) addressin+ j| = tmpstr[j];

if (1=0) address[n+ j]=’\n’;

n=mn-+j; /x Keep track of last index of the address array */
num_address_lines ++;

}

else { /* If just spaces and a linefeed character x/
address[n] = ’\n’; /+ Blank line of address field */
}

forintf (stdout, "**x");

}
if (verbose) {
forintf (stdout, "%s: Counted, %1d address lines.\n", progname, num_address_lines);
fprintf (stdout, "Address:\n");
n = 0;
for (k =1; k < num_address_lines; k++) {
for (j =n; address[j] # ’\n’; j++) fprintf (stdout, "%e", address[j]);
forintf (stdout, "\n");
n=7j+1;
¥

}
}

This code is used in section 22.

§28 DVLABEL READING INPUT AS SUPPLIED BY THE USER 27

28. Parse for the email address to be used.

(Read email address 28) =

{
forintf (stdout, "Specify email of author of the DV tape [Press enter to leave blank]:\n");
forintf (stdout, "**");
while ((tmpch = fgetc(INSTREAM)) = °,°) ; /* Get rid of leading blank spaces x/
ungetc (tmpch, INSTREAM);
k=0;
while ((¢tmpstr[k++] = fgetc(INSTREAM)) # ’\n’) ; /* Read line */
if (k>1) /+ If more text than just spaces and a linefeed character */
for (j=0; j<k; j++) email[j] = tmpstr[j];
else /* If just spaces and a linefeed character x/

email[0] = ’\n’; /* Blank email field */
if (verbose) {
forintf (stdout, "Email: ");
for (j =0; email[j] # ’\n’; j++) fprintf (stdout,"%c", email [§]);
forintf (stdout, "\n");
}
¥

This code is used in section 22.

28 READING INPUT AS SUPPLIED BY THE USER DVLABEL §29

29. Generating the preamble of output TEX source code for the labels. The physical outer of the Mini
Digital Label dimensions are based on the inset of TDK cassettes, with flapheight of 14.5 mm (41.3 pt),
spineheight of 12.5 mm (35.6 pt), faceheight of 47 mm (133.7 pt), and facewidth of 67 mm (190.6 pt), hence
summing up to overall outer dimensions of 190.6 x 210.6 pt of the label.

(Save preamble source code 29) =

facewidth = 190.6 + 3.0 x 72.27/25.4;
faceheight = 133.7,;
spineheight = 35.6;
flapheight = 41.3,;
ifacewidth = facewidth — 14.0 x linethickness;
ifaceheight = faceheight — 11.0 x linethickness — 0.5 * edgeseparation;
ispineheight = spineheight — 8.0 x linethickness — edgeseparation;
iflapheight = flapheight — 11.0 x linethickness — 0.5 x edgeseparation;
if (—outfile_specified)
fprintf (OUTSTREAM, ")%—-——-——- uTEX, ,CODE_BEGINS_HERE —----—-———=————-—- \n");
forintf (OUTSTREAM, "%% File: %s.tex\n", outputfilename);
fprintf (QUTSTREAM, "%%_ TeX code generated by %s, v.%s, %s", progname, VERSION, ctime (&now));
fprintf (QUTSTREAM, "%%_Copyright,,(C) Fredrik Jonsson, ,2003-2005\n%%\n");
fprintf (QUTSTREAM, "\\hoffset=-35pt\\voffset=-25pt\n");
fprintf (QUTSTREAM, "\\hsize=175mm\\vsize=254mm\n");
forintf (OUTSTREAM, "\\font\\eightcmssqeight=cmssq8\n");
fprintf (QUTSTREAM, "\\font\\sevencmtt=cmtt7\n");
fprintf (QUTSTREAM, "\\font\\tencmssqten=cmssq8 at, 10 truept\n");
fprintf (OUTSTREAM, "\\font\\deffacefont=cmr7\n");
fprintf (QUTSTREAM, "\\font\\deftimestampfont=cmtt8 at, 7 truept\n");
forintf (OUTSTREAM, "\\font\\defspinefont=cmro\n");
fprintf (OUTSTREAM, "\\font\\defflapfont=cmr7\n");
fprintf (QUTSTREAM, "\\def\\monthname{\\ifcase\\month%%\n");
fprintf (QUTSTREAM, ", \\or Jan\\or_Feb\\or Mar\\or Apr\\or May\\or, Jun%%\n");
forintf (QUTSTREAM, ", \\or Jul\\or_ Aug\\or Sep\\or Oct\\or Nov\\or Dec%%\n");
fprintf (QUTSTREAM, " ,\\fi}\n");
forintf (OUTSTREAM, "\\def\\fullmonthname{\\ifcase\\month%%\n");
fprintf (OUTSTREAM, " ,\\or January\\or _February\\or March\\or April%%\n");
forintf (QUTSTREAM, ", \\or_May\\or,June\\or July\\or August\\or September\n");
forintf (QUTSTREAM, " ,\\or October\\or November\\or December\\fi}\n");
fprintf (QUTSTREAM, "\\def\\today{\\fullmonthname\\space\\number\\day, %%\n");
fprintf (OUTSTREAM, "\ \space\\number\\year}\n");
fprintf (QUTSTREAM, "\\def\\dvby{Digital Video_ by\\ }\n");
fprintf (OUTSTREAM, "\\parindent, Opt\n");
fprintf (QUTSTREAM, "\\newdimen\\facewidth\n");
forintf (QUTSTREAM, "\\newdimen\\faceheight\n");
fprintf (OUTSTREAM, "\\newdimen\\spineheight\n");
fprintf (OUTSTREAM, "\\newdimen\\flapheight\n");
fprintf (QUTSTREAM, "\\newdimen\\linethick\n");
forintf (OUTSTREAM, "\\newdimen\\spacethick\n");
fprintf (QUTSTREAM, "\\newdimen\\edgeseparation\n");
fprintf (QUTSTREAM, "\\newdimen\\cropthick\n");
fprintf (OUTSTREAM, "\\facewidth=%1.3fpt\n", facewidth);
fprintf (QUTSTREAM, "\\faceheight=%1.3fpt\n", faceheight);
fprintf (QUTSTREAM, "\\spineheight=%1.3fpt\n", spineheight);
fprintf (QUTSTREAM, "\\flapheight=71.3fpt\n", flapheight);

§29

}

DVLABEL READING INPUT AS SUPPLIED BY THE USER

forintf (OUTSTREAM, "\\linethick=%1.3fpt\n", linethickness);
fprintf (QUTSTREAM, "\\spacethick=%1.3fpt\n", 2.0 * linethickness);
fprintf (QUTSTREAM, "\\edgeseparation=%1.3fpt\n", edgeseparation);
forintf (OUTSTREAM, "\\cropthick=%1.3fpt\n", clthick);
f (headline) {
fprintf (OUTSTREAM, "\\headline={\\hfill{\\tt dvlabel output");
fprintf (OUTSTREAM, " %s", ctime (&now));
fprintf (OUTSTREAM, ", [%s1}}\n", (infile_specified ? inputfilename : "stdin"));
fprintf (OUTSTREAM, "\\footline={\\hfill\\folio\\hfill}\n");

else {
fprintf (OUTSTREAM, "\\headline={\\hfil}\n");
fprintf (OUTSTREAM, "\\nopagenumbers\n");
}
forintf (OUTSTREAM, "\\def\\boxit#1{\\vbox{\\hrule height\\linethick%¥%\n");
forintf (QUTSTREAM, ", \\hbox{\\vrule width\\linethick\\kern\\spacethick%\n");
forintf (QUTSTREAM, ", \\vbox{\\kern\\spacethick#1\\kern\\spacethick}%¥%\n");
forintf (QUTSTREAM, ", \\kern\\spacethick\\vrule width\\linethick}%%\n");
fprintf (QUTSTREAM, ", \\hrule height\\linethick}}%%\n");

This code is used in section 5.

29

30 READING INPUT AS SUPPLIED BY THE USER DVLABEL §30

30. Generating the output TEX source code for the labels.

(Save label source code 30) =
{
forintf (OUTSTREAM, "\\def\\timestamp{");
for (j = 0; timestamp[j] # ’\n’; j++) fprintf (QOUTSTREAM, "%c", timestamp|j]);
forintf (OUTSTREAM, "}%%\n");
fprintf (QUTSTREAM, "\\def\\title{");
for (j =0; title[j] # *\n’; j++) fprintf (OUTSTREAM, "Yc", title[j]);
forintf (OUTSTREAM, "}%%\n");
fprintf (QUTSTREAM, "\\def\\author{");
for (j = 0; author[j] # ’\n’; j++) fprintf (QUTSTREAM, "%c", author[j]);
forintf (OUTSTREAM, "}%%\n");
fprintf (QUTSTREAM, "\\def\\email{");
for (j = 0; email[j] # ’\n’; j++) fprintf (OUTSTREAM, "%c", email[j]);
fprintf (QUTSTREAM, "}%%\n");
fprintf (QUTSTREAM, "%%_Define the_ outline of jthe face of the label\n");
forintf (OUTSTREAM, "\\setbox1=\\hbox to %1.3fpt{{%%\n", ifacewidth);
fprintf (QUTSTREAM, ", \\vbox to \\faceheight{%%\n");
forintf (QUTSTREAM, "uuu\\hbox{\\deffacefont\\timestamp\\hfil}%%\n");
n = 0;
for (k=1; k < num_toc_lines; k++) {
forintf (QUTSTREAM, "L \\vskip —-3pt\\hbox{\\deffacefont ");
for (j =mn; toc[j] # ’\n’; j++) fprintf (QUTSTREAM, "%c", toc[j]);
fprintf (OUTSTREAM, "\\hfil}}%\n");
n=7+1;
}
fprintf (OUTSTREAM, ", \\vEil}\\hfil}%%\n");
forintf (OUTSTREAM, "%%_Define the outline of the spine of jthe label\n");
forintf (QUTSTREAM, "\\setbox2=\\hbox to %1 .3fpt{{%%\n", ifacewidth);
fprintf (QUTSTREAM, ", ,\\vbox to %1.3fpt{%%\n", ispineheight);
forintf (QUTSTREAM, "uuu\\hbox{\\deftimestampfont\\timestamp\\hfil}%%\n");
forintf (QUTSTREAM, "uuu\\hbox{\\defspinefont\\title\\hfil}%%\n");
fprintf (OUTSTREAM, " \\vEil}\\hfil}%%\n");
fprintf (QUTSTREAM, "%% Define the outline of the flap of the label\n");
fprintf (QUTSTREAM, "\\setbox3=\\hbox to %1.3fpt{{%%\n", ifacewidth);
fprintf (QUTSTREAM, ", \\vbox to %1.3fpt{%%\n", iflapheight);
forintf (QUTSTREAM, "Luuu\\hbox{\\defflapfont\\dvby\\author\\hfil}%%\n");
n = 0;
for (k =1; k < num_address_lines; k++) {
fprintf (OUTSTREAM, "0 \\vskip -3pt\\hbox{\\defflapfont ");
for (j = n; address[j] # >\n’; j++) fprintf (QUTSTREAM, "%c", address[j]);
fprintf (OUTSTREAM, "\\hfil}\n");
n=j+1
}
forintf (OUTSTREAM, "L\ \vskip -3pt\\hbox{\\defflapfont\\email\\hfil}%%\n");
forintf (OUTSTREAM, ", \\vEil}\\hfil}%%\n");
fprintf (OUTSTREAM, "\\def\\dvlabel{\\hskip\\linethick\\boxit{%%\n");
fprintf (QUTSTREAM, ", \\boxit{\\box1}\\vskip\\edgeseparation¥%\n");
forintf (OUTSTREAM, "L\ \boxit{\\box2}\\vskip\\edgeseparation)%\n");
forintf (OUTSTREAM, ", \\boxit{\\box3}}\\hskip\\linethick}}%\n");
if ((num_labels = 1) V (num_labels = 3)) fprintf (QUTSTREAM, "\\hskip %1.3fpt", (20.0));
fprintf (QUTSTREAM, "\\dvlabel\n");

§30 DVLABEL READING INPUT AS SUPPLIED BY THE USER 31

if ((num_labels = 2) V (num_labels = 4) V (num_labels = 6)) {
fprintf (OUTSTREAM, "\\par\\nointerlineskip\n");

}
}

This code is used in section 5.

31. Close one page of output, with each page containing num_labels_per_page labels, and write any preamble
for initialization of a new page to the output stream.

(Close output page 31) =

{

forintf (DUTSTREAM7 "\\vfill\\eject\n");
This code is used in sections 5 and 34.

32. Before writing the first row of labels to the page output, save the vertical crop marks to be used as
alignment marks in vertical cutting of the final pages.

(Write vertical crop marks with width measure 32) =

{
fprintf (QUTSTREAM, "\\hskip,%1.3fpt\\vrule height20pt width%1.3fpt%%\n",20.0 — clthick /2.0,
clthick);
forintf (OUTSTREAM, "\\hbox,to%1.3fpt{\\hfil", facewidth — clthick);
fprintf (QUTSTREAM,

"$\\matrix{{%1.3£{\\rm_pt}/%1.3f{\\rm\\umm}}" "\\cr{I\\cr}$\\hfil}%%\n" , facewidth,
facewidth = (25.4/72.27));

fprintf (QUTSTREAM, "\\vrule_height20pt, widthi1.3fpth%\n", clthick);

forintf (OUTSTREAM, "\\hbox to_%1.3fpt{\\hfil", facewidth — clthick);

forintf (QUTSTREAM,
"$\\matrix{{%1.3f{\\rm_pt}/%1.3f{\\rm\\umm}}" "\\cr{I\\cr}$\\hfil}%%\n", facewidth,
facewidth = (25.4/72.27));

forintf (QUTSTREAM, "\\vrule_height20pt width%1.3fpt\\par\\nointerlineskip\n", clthick);

This code is used in sections 5 and 34.

33. The following block is analogous to the previous one, but now instead considering horizontal crop
marks, to be used as alignment marks in horizontal cutting of the final pages.

(Write horizontal crop marks with height measure 33) =
{
forintf (QUTSTREAM, "\\vskip\\linethick\n");
fprintf (QUTSTREAM, "\\vrule_height%1.3fpt width20pt", clthick);
forintf (OUTSTREAM, "\\hskip %1.3fpt", 2.0 * facewidth);
fprintf (QUTSTREAM, "\\vrule_height%1.3fpt width20pt\\par\\nointerlineskip\n", clthick);
fprintf (QUTSTREAM, "\\vskip\\linethick\n");

}

This code is used in sections 5 and 34.

32 READING INPUT AS SUPPLIED BY THE USER DVLABEL §34

34. Generating the closing TEX source code for the labels.

(Save closing source code 34) =
{
if ((num_labels # 2) A (num_labels # 4)) {
fprintf (OUTSTREAM, "\\par\\nointerlineskip\n");

if (num_labels # num_labels_per_page) {
if (num_labels # 0) {
if (generate_crop-marks) {
(Write horizontal crop marks with height measure 33)
(Write vertical crop marks with width measure 32)

}

(Close output page 31)
)
forintf (QUTSTREAM, "\\bye\n");
if (—outfile_specified)
forintf (OUTSTREAM, "hth———————— uTEX ,CODE_ENDS, HERE j-----—-————=————- \n");
}

This code is used in section 5.

35. Compiling the output TEX source code. If the -c or ——compile option was present at the command
line during startup of DVLABEL, then the program will make use of DVIPS to compile the previously generated
TEX source code into PostScript. If the —c or ——compile option is used together with a specified output file
(specified using the -o or ——outputfile options), then this output file will be compiled. On the other hand,
if the —c or —-compile option is used while the program should send the generated source to stdout, then
the internally stored lines of output will be compiled instead (hence eliminating the need for a temporary
file for the compilation).

(Compile source code 35) =

if (compile) {
if (verbose) {
fprmtf(stdout, "%s:uCompiling, the TeX source_code into PostScript.\n", progname);

if (outfile_specified) {
if (eps_output) {
sprintf (tmpstr, "tex %s;Ldvipsuhsuhsu—ELu-ouks . eps", outputfilename, dvipsopts,
outputfilename , outputfilename);
}

else {
sprintf (tmpstr, "tex %hs;Ldvipsuhsuhsu—ouhs . ps", outputfilename, dvipsopts, outputfilename,
outputfilename);
}
system (tmpstr); /* System call to execute tmpstr =/
}
else {
forintf (stdout, "Compiling terminal output: Not, implemented yet.\n");
exit (FAILURE);

}
}

This code is used in section 5.

836 DVLABEL

36. Index.

__func__: 5.
__VA_ARGS__: 5.
address: 14, 27, 30.
argc: 5, 15.

args: 8, 10.

argv: 5, 12, 15.
author: 14, 26, 30.
ch: 11, 13.

clthick: 14, 29, 32, 33.
compile: 14, 15, 35.
ctime: 29.

DEFAULT_CROPLINETHICKNESS: 5, 14.

DEFAULT_DVIPSOPTS: 5, 14.
DEFAULT_EDGESEPARATION: 5, 14.
DEFAULT_LINETHICKNESS: 5, 14.
done: 14, 23, 27.

dvipsopts: 14, 15, 35.
dvipsopts_specified: 14, 15.
edgeseparation: 14, 15, 29.
email: 14, 28, 30.

eps_output: 14, 15, 35.

exit: 11, 15, 18, 19, 35.
faceheight: 14, 29.

facewidth: 14, 29, 32, 33.
FAILURE: 5, 11, 15, 18, 19, 35.
felose: 20.

fgetc: 11, 23, 24, 25, 26, 27, 28.
filename: 12.

flapheight: 14, 29.

fopen: 18, 19.

format: 8, 10.

forintf: 8, 10, 11, 15, 16, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35.
fseek: 18, 19.
function_name: 8.
generate_crop-marks: 5, 14, 15, 34.
gettimeofday: 8.
headline: 14, 15, 29.
hl: 9, 10.
ifaceheight: 14, 29.
ifacewidth: 14, 29, 30.
iflapheight: 14, 29, 30.
infile: 5, 14, 18, 20, 22.
infile_specified: 5, 14, 15, 18, 20, 29.
inputfilename: 14, 15, 18, 29.
INSTREAM: 5, 23, 24, 25, 26, 27, 28.
nstream: 11.
isalnum: 12, 13.
ispineheight: 14, 29, 30.
jio12, 14
k: 12, 14.

INDEX

linethickness: 14, 15, 29.
localtime: 8.

log: 2, 5,8, 11, 15, 18, 19.
log_printf: 5, 8.

logentry: 8.
it: 8.

main: 5.
MAXCHAR: 5, 14.
n: 14.

newlabel: 5, 11.

no_arg: 14, 15.

now: 14, 29.

num_address_lines: 14, 27, 30.

num_labels: 5, 14, 30, 34.
num_labels_per_page: 5, 14, 31, 34.
num_toc_lines: 14, 23, 30.

optarg: 6.

outfile: 5, 14, 19, 20.

outfile_specified: 5, 14, 15, 19, 20, 29, 34, 35.
outputfilename: 14, 15, 19, 29, 35.
OUTSTREAM: 5, 29, 30, 31, 32, 33, 34.
pathcharacter: 12, 13.

printf: 8, 10.

progname: 6,9, 11, 12, 15, 16, 23, 27, 29, 35.
SEEK_SET: 18, 19.

showsomehelp: 9, 15.

spineheight: 14, 29.

sprintf: 8, 10, 19, 35.

sscanf: 15.

stderr: 10.

stdin: 5, 22.

stdout: 5, 8, 10, 11, 15, 16, 23, 24, 25, 26,
27, 28, 35.

streat: 18.

stremp: 19.

strepy: 15.

strip_away-path: 2, 12, 15.

strlen: 8, 10.

SUCCESS: 5, 15.

system: 35.

time: 8, 14.

timestamp: 14, 24, 30.
timeval: 8.

time0: 8.

title: 14, 25, 30.

tm: 8.

tm_hour: 8.

tm-mday: 8.

tm_min: 8.

tm_mon: 8.

tm_sec: 8.

33

34 INDEX DVLABEL 836

tm_year: 8.

tmpch: 14, 23, 24, 25, 26, 27, 28.
tmpstr: 14, 19, 23, 24, 25, 26, 27, 28, 35.
toc: 14, 23, 30.

tv: 8.

tv_usec: 8.

ungetc: 23, 24, 25, 26, 27, 28.

va_end: 8, 10.

va_start: 8, 10.

verbose: 14, 15, 18, 19, 23, 24, 25, 26, 27, 28, 35.
VERSION: 5, 16, 29.

vsprintf: 8, 10.

DVLABEL NAMES OF THE SECTIONS 35

< Close files 20> Used in section 5.

(Close output page 31) Used in sections 5 and 34.

(Compile source code 35) Used in section 5.

(Display banner 16) Used in section 5.

(Global variables 6) Used in section 5.

<LOC&1 variables 14> Used in section 5.

< Open files for reading 18> Used in section 5.

(Open files for writing 19) Used in section 5.

(Parse command line 15) Used in section 5.

(Read address 27) Used in section 22.

(Read author name 26) Used in section 22.

<Read email address 28> Used in section 22.

(Read table of contents 23) Used in section 22.

(Read time stamp 24) Used in section 22.

(Read title 25) Used in section 22.

(Routine for checking for a valid path character 13) Used in section 12.
{Routine for displaying a single line of the help message 10) Used in section 9.
(Routine for displaying help message 9) Used in section 7.

(Routine for logging and error messaging 8) Used in section 7.

{Routine for removing preceding path of filenames 12) Used in section 7.
{Save closing source code 34) Used in section 5.

(Save label source code 30) Used in section 5.

(Save preamble source code 29) Used in section 5.

(Scan for beginning of new label 11) Used in section 7.

(Scan text lines of one label from input stream 22) Used in section 5.
(Subroutines 7) Used in section 5.

(Write horizontal crop marks with height measure 33) Used in sections 5 and 34.
(Write vertical crop marks with width measure 32) Used in sections 5 and 34.

DVLABEL

Section Page

Introduction e 1 1
Revision history of the program 2 2
Compiling the source codeo 3 4
Running the program 4 5
The main PrOZramlottt et e e e e e e) 10
Declaration of local variables of the main program 14 17
Parsing command line options 15 18
Opening and closing files for data output 17 20
Reading input as supplied by the user 21 22

I .o 36 33

